如圖,B、C、E在同一直線上,△ABC、△DCE均為等邊三角形,試說(shuō)明△CFG為等邊三角形.

答案:
解析:

解答:∵△ABC、△DCE是等邊三角形,∴ACBCDCCE,∠ACB=∠DCE,則∠BCD=∠ACD,∴△BCD≌△ACD(SAS),∴∠BDC=∠AEC,又∵CECD,∠GCE=∠FCD,∴△GCE≌△FCD(ASA),∴CFCG,又∵∠FCG,∴△FCG為等邊三角形.


提示:

  名師導(dǎo)引:∵易知∠FCG,∴此題關(guān)鍵在于說(shuō)明CFCG,可以把CFCG分別放在△DCF和△ECG中,來(lái)說(shuō)明這兩個(gè)三角形全等.易分析還差一個(gè)條件,∠BDC=∠GEC,又可以把這兩個(gè)角放在△BCD和△ACE中考慮.

  點(diǎn)評(píng):等邊三角形的三邊相等在全等三角形識(shí)別中,通常作法是:把等邊三角形的邊放在兩個(gè)不同的三角形中.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,以△ABC三邊為邊在BC同側(cè)作三個(gè)等邊△ABD、△BCE、△ACF.
請(qǐng)回答下列問(wèn)題:
(1)求證:四邊形ADEF是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,點(diǎn)A,B在直線l的同側(cè),在直線l上找一點(diǎn)P,使得AP+BP的值最。
小明的思路是:如圖2,作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B,則A′B與直線l的交點(diǎn)P即為所求.
精英家教網(wǎng)
請(qǐng)你參考小明同學(xué)的思路,探究并解決下列問(wèn)題:
(1)如圖3,在圖2的基礎(chǔ)上,設(shè)AA′與直線l的交點(diǎn)為C,過(guò)點(diǎn)B作BD⊥l,垂足為D.若CP=1,PD=2,AC=1,寫(xiě)出AP+BP的值;
(2)將(1)中的條件“AC=1”去掉,換成“BD=4-AC”,其它條件不變,寫(xiě)出此時(shí)AP+BP的值;
(3)請(qǐng)結(jié)合圖形,直接寫(xiě)出
(2m-3)2+1
+
(8-2m)2+4
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、已知:如圖,△ABC和△DBC的頂點(diǎn)在BC邊的同側(cè),AB=DC,AC=BD交于E,∠BEC的平分線交BC于O,延長(zhǎng)EO到F,使EO=OF.求證:四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

作圖題
(1)如圖1,AC、AB是兩條筆直的交叉公路,M、N是兩個(gè)實(shí)習(xí)點(diǎn)的同學(xué)參加勞動(dòng),現(xiàn)欲建一個(gè)茶水供應(yīng)站,使得此茶水供應(yīng)站到公路兩邊的距離相等,且離M、N兩個(gè)實(shí)習(xí)點(diǎn)的距離也相等,試問(wèn):此茶水供應(yīng)站應(yīng)建在何處?(要求:尺規(guī)作圖,保留作圖痕跡,不用寫(xiě)作法)
(2)如圖2,已知直線河岸MN同側(cè)有兩個(gè)村莊A和B,現(xiàn)要在河邊修建一個(gè)取水點(diǎn)P.為了節(jié)省成本,使取水點(diǎn)到A、B兩個(gè)村莊鋪設(shè)的水管總長(zhǎng)度最短,請(qǐng)你確定取水點(diǎn)P的位置.(要求:不用寫(xiě)作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)A和點(diǎn)B在直線l同一側(cè).求作:直線l上一點(diǎn)P,使PA+PB的值最。

查看答案和解析>>

同步練習(xí)冊(cè)答案