已知,如圖,P是正方形ABCD內(nèi)一點(diǎn),在正方形ABCD外有一個(gè)點(diǎn)E,滿足∠ABE=∠CBP,BE=精英家教網(wǎng)BP
(1)求證:△CPB≌△AEB;
(2)求證:PB⊥BE;
(3)若∠APB=135°,判斷△PAE形狀,并説明你的理由.
分析:(1)由四邊形ABCD是正方形,可得AB=CD,根據(jù)全等三角形的判定定理即可證明;
(2)四邊形ABCD是正方形,可得∠ABC=90°,即∠CBP+∠ABP=90°,又∠ABE=∠CBP,可得∠ABE+∠ABP=90°即可證明;
(3)求出∠PBE=90°,∵BE=BP,可得∠BPE=∠BEP=
1
2
(180°-∠PBE)=
1
2
×90°=45°,所以∠APE=∠APB-∠BPE=135°-45°=90°即可證明.
解答:(1)證明:∵四邊形ABCD是正方形,
∴AB=CD,
又∵∠ABE=∠CBP,BE=BP,
∴△CPB≌△AEB(SAS);

(2)證明:∵四邊形ABCD是正方形,
∴∠ABC=90°,
即∠CBP+∠ABP=90°.
∵∠ABE=∠CBP,
∴∠ABE+∠ABP=90°,
即∠PBE=90°,
∴PB⊥BE;

(3)解:△PAE是直角三角形.
理由:由(2)知PB⊥BE,
∴∠PBE=90°.
∵BE=BP,
∴∠BPE=∠BEP=
1
2
(180°-∠PBE)=
1
2
×90°=45°,
∴∠APE=∠APB-∠BPE=135°-45°=90°,
∴△PAE是直角三角形.
點(diǎn)評(píng):本題主要考查了正方形的性質(zhì)和全等三角形的判定及性質(zhì),難度適中,關(guān)鍵是掌握正方形的性質(zhì)和全等三角形的判定及性質(zhì)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點(diǎn)A在y軸的正方向上,A(0,6),D(精英家教網(wǎng)4,6),且AB=2
10

(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)A、B、D三點(diǎn)的拋物線的解析式;
(3)點(diǎn)C是不是也在(2)中的拋物線上,若在請(qǐng)證明,若不在請(qǐng)說(shuō)明理由;
(4)在(2)中所求的拋物線上是否存在一點(diǎn)P,使得S△PBC=
1
2
S梯形ABCD
?若存在,請(qǐng)求出該點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在平面直角坐標(biāo)系中,△ABC為等腰三角形,直線AC解析式為y=-2x+6,精英家教網(wǎng)將△AOC沿直線AC折疊,點(diǎn)O落在平面內(nèi)的點(diǎn)E處,直線AE交x軸于點(diǎn)D.
(1)求直線AD解析式;
(2)動(dòng)點(diǎn)P以每秒1個(gè)單位的速度,從點(diǎn)B出發(fā)沿著x軸正方向勻速運(yùn)動(dòng),點(diǎn)Q是射線CE上的點(diǎn),且∠PAQ=∠BAC,設(shè)P運(yùn)動(dòng)時(shí)間為t秒,求△POQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線CE上是否存在一點(diǎn)F,使以點(diǎn)F、A、D、P為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t值及Q點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,一次函數(shù)y=
1
2
x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y=
1
2
x2+bx+c的圖象與一次函數(shù)y=
1
2
x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0)
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上有一動(dòng)點(diǎn)P,從O點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿x軸向右運(yùn)動(dòng),是否存在點(diǎn)P使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)P運(yùn)動(dòng)的時(shí)間t的值,若不存在,請(qǐng)說(shuō)明理由.
(4)若動(dòng)點(diǎn)P在x軸上,動(dòng)點(diǎn)Q在射線AC上,同時(shí)從A點(diǎn)出發(fā),點(diǎn)P沿x軸正方向以每秒2個(gè)單位的速度運(yùn)動(dòng),點(diǎn)Q以每秒a個(gè)單位的速度沿射線AC運(yùn)動(dòng),是否存在以A、P、Q為頂點(diǎn)的三角形與△ABD相似,若存在,求a的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖所示,直線l的解析式為y=
34
x-3
,并且與x軸、y軸分別交于點(diǎn)A、B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)半徑為0.75的⊙O1,以0.4個(gè)單位/秒的速度從原點(diǎn)向x軸正方向運(yùn)動(dòng),問(wèn)在什么時(shí)刻與直線l相切;
(3)在第(2)題的條件下,在⊙O1運(yùn)動(dòng)的同時(shí),與之大小相同的⊙O2從點(diǎn)B出發(fā),沿BA方向運(yùn)動(dòng),兩圓經(jīng)過(guò)的區(qū)域重疊部分是什么形狀的圖形?并求出其面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市黃州區(qū)路口中學(xué)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知:如圖,一次函數(shù)y=x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y=x2+bx+c的圖象與一次函數(shù)y=x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0)
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上有一動(dòng)點(diǎn)P,從O點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿x軸向右運(yùn)動(dòng),是否存在點(diǎn)P使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)P運(yùn)動(dòng)的時(shí)間t的值,若不存在,請(qǐng)說(shuō)明理由.
(4)若動(dòng)點(diǎn)P在x軸上,動(dòng)點(diǎn)Q在射線AC上,同時(shí)從A點(diǎn)出發(fā),點(diǎn)P沿x軸正方向以每秒2個(gè)單位的速度運(yùn)動(dòng),點(diǎn)Q以每秒a個(gè)單位的速度沿射線AC運(yùn)動(dòng),是否存在以A、P、Q為頂點(diǎn)的三角形與△ABD相似,若存在,求a的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案