如圖,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0)、(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線交折線OAB于點(diǎn)E.

(1)記的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形,DE=,試探究四邊形與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由。

(1);(2)不變,.

解析試題分析:(1)要表示出△ODE的面積,要分兩種情況討論,①如果點(diǎn)E在OA邊上,只需求出這個(gè)三角形的底邊OE長(E點(diǎn)橫坐標(biāo))和高(D點(diǎn)縱坐標(biāo)),代入三角形面積公式即可;②如果點(diǎn)E在AB邊上,這時(shí)△ODE的面積可用長方形OABC的面積減去△OCD、△OAE、△BDE的面積;
(2)重疊部分是一個(gè)平行四邊形,由于這個(gè)平行四邊形上下邊上的高不變,因此決定重疊部分面積是否變化的因素就是看這個(gè)平行四邊形落在OA邊上的線段長度是否變化.
試題解析:
解:(1)∵四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),
∴點(diǎn)B的坐標(biāo)是(3,1),
若直線經(jīng)過點(diǎn)A(3,0)時(shí),則b=;
若直線經(jīng)過點(diǎn)B(3,1)時(shí),則b=;
若直線經(jīng)過點(diǎn)C(0,1)時(shí),則b=1.
①如圖1,若直線與折線OAB的交點(diǎn)在OA上時(shí),即1<b≤,
此時(shí)E(2b,0)
∴S=OE•CO=×2b×1=b;

②如圖2,若直線與折線OAB的交點(diǎn)在BA上時(shí),即,此時(shí)

∴S=S-(S△OCD+S△OAE+S△DBE)=
綜上所述,;
(2)設(shè)O1A1與CB相交于點(diǎn)M,OA與C1B1相交于點(diǎn)N,則矩形O1A1B1C1與矩形OABC的重疊部分的面積即為四邊形DNEM的面積.由題意知,DM∥NE,DN∥ME,
∴四邊形DNEM為平行四邊形
根據(jù)軸對(duì)稱知,∠MED=∠NED
又∵∠MDE=∠NED,
∴∠MED=∠MDE,
∴MD=ME,
∴平行四邊形DNEM為菱形.
過點(diǎn)D作DH⊥OA,垂足為H,設(shè)菱形DNEM的邊長為a,
由題意知,D(2b-2,1),E(2b,0),
∴DH=1,HE=2b-(2b-2)=2,
∴HN=HE-NE=2-a,
則在Rt△DHN中,由勾股定理知:a2=(2-a)2+12
∴a=,
∴S四邊形DNEM=NE•DH=
∴矩形O1A1B1C1與矩形OABC的重疊部分的面積不發(fā)生變化,面積始終為
考點(diǎn):一次函數(shù)綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(-4,-2)和B(a,4).

(1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo);
(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為保護(hù)學(xué)生視力,課桌椅的高度都是按一定的關(guān)系配套設(shè)計(jì)的,研究表明:假設(shè)課桌的高度為 cm,椅子的高度為 cm,則應(yīng)是的一次函數(shù),下表列出兩套符合條件的課桌椅的高度:

 
第一套
第二套
椅子高度(cm)
40
37
課桌高度(cm)
75
70
(1)請(qǐng)確定的函數(shù)關(guān)系式.
(2)現(xiàn)有一把高39 cm的椅子和一張高78.2 cm的課桌,它們是否配套?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB與坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,且OA、OB的長分別為方程x2-6x+8=0的兩個(gè)根(OA<OB),點(diǎn)C在y軸上,且OA︰AC=2︰5,直線CD垂直于直線AB于點(diǎn)P,交x軸于點(diǎn)D.

(1)求出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出直線CD的解析式.
(3)若點(diǎn)M為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)M,使以點(diǎn)B、P、D、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某物流公司的甲、乙兩輛貨車分別從A、B兩地同時(shí)相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達(dá)C地,并在C地用1小時(shí)配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,下圖是甲、乙兩車間的距離(千米)與乙車出發(fā)(時(shí))的函數(shù)的部分圖像.

(1)A、B兩地的距離是          千米,乙車出發(fā)         小時(shí)與甲相遇;
(2)求乙車出發(fā)1.5小時(shí)后直至到達(dá)A地的過程中,的函數(shù)關(guān)系式及的取值范圍;
(3)乙車出發(fā)多長時(shí)間,兩車相距100千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=-x+8與x軸、y軸分別相交于點(diǎn)A、B,設(shè)M是OB上一點(diǎn),若將△ABM沿AM折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)B'處.

求: (1)點(diǎn)B'的坐標(biāo):             .(2分)
(2)直線AM所對(duì)應(yīng)的函數(shù)關(guān)系式.(8分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

若方程組的解滿足,求關(guān)于的函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某農(nóng)戶種植一種經(jīng)濟(jì)作物,總用水量y(米3)與種植時(shí)間x(天)之間的函數(shù)關(guān)系式圖

(1)第20天的總用水量為多少米3?
(2)當(dāng)x≥20時(shí),求y與x之間的函數(shù)關(guān)系式;
(3)種植時(shí)間為多少天時(shí),總用水量達(dá)到7000米3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

 


進(jìn)價(jià)(元/部)
4000
2500
售價(jià)(元/部)
4300
3000
該商場計(jì)劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計(jì)全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場計(jì)劃購進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過市場調(diào)研,該商場決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

同步練習(xí)冊(cè)答案