【題目】綜合與實踐

問題情境

數(shù)學活動課上,老師讓同學們以三角形平移與旋轉為主題開展數(shù)學活動,是兩個等邊三角形紙片,其中,

解決問題

1)勤奮小組將按圖1所示的方式擺放(在同一條直線上) ,連接.發(fā)現(xiàn),請你給予證明;

2)如圖2,創(chuàng)新小組在勤奮小組的基礎上繼續(xù)探究,將繞著點逆時針方向旋轉,當點恰好落在邊上時,求的面積;

拓展延伸

3)如圖3,縝密小組在創(chuàng)新小組的基礎上,提出一個問題:沿方向平移得到連接,當恰好是以為斜邊的直角三角形時,求的值.請你直接寫出的值.

【答案】1)見解析;(2;(32

【解析】

1)利用SAS證明△ACE≌△DCB即可得到結論;

2)過點BBFAC,交AC的延長線于F,求出∠CBF=30°,得到CF=1cm,根據(jù)勾股定理求出BF,再根據(jù)三角形的面積公式計算即可;

3)根據(jù)∠=90°證得,根據(jù)=60°求出,由此得到a的值.

1)∵是兩個等邊三角形,

AC=CD,BC=CE,∠ACD=ECB=60°

∴∠ACD+DCE=ECB+DCE,

即∠ACE=DCB,

∴△ACE≌△DCB,

AE=BD;

2)由題意得∠ACD=ECB=60°,

過點BBFAC,交AC的延長線于F,

∴∠BCF=180°-ACD-ECB=60°,∠F=90°,

∴∠CBF=30°,

CF=BC=1cm,

BF=cm,

=;

3)由題意得∠ACD==60°,

∵∠=90°,

,

,

,

=2cm,

a=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度數(shù);

(2)BE+CG的長;

(3)O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,ABCDEF(它們均為銳角三角形)中,AC=DF,AB=DE.

(1)用尺規(guī)在圖中分別作出AB、DE邊上的高CG、FH(不要寫作法,保留作圖痕跡).

(2)如果CG=FH,猜測ABCDEF是否全等,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批乒乓球的質量檢驗結果如下

1)畫出這批乒乓球優(yōu)等品頻率的折線統(tǒng)計圖;

2)這批乒乓球優(yōu)等品的概率的估計值是多少?

3)從這批乒乓球中選擇5個黃球、13個黑球、22個紅球,它們除顏色外都相同,將它們放入一個不透明的袋中

①求從袋中摸出一個球是黃球的概率;

②現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于問至少取出了多少個黑球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:ABCDE在直線AB上,且EFEG,EF交直線CD于點MEG交直線CD于點N

1)若∠134°,求∠2的度數(shù);(2)若∠221,直接寫出圖中等于41的角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作發(fā)現(xiàn):

1)如圖,在平面直角坐標系中有一點,將點先向右平移3個單位長度,再向下平移3個單位長度得到點,則點的坐標為    ;并在圖中畫出直線的函數(shù)圖象;

2)直接寫出直線的解析式    

3)若直線上有一動點,設點的橫坐標為

①直接寫出點的坐標    ;

②若點位于第四象限,直接寫出三角形的面積    (用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊三角形ABCAB=12,以AB為直徑的半圓與BC邊交于點D,過點DDFAC,垂足為F,過點FFGAB,垂足為G,連接GD,

1)求證:DF與⊙O的位置關系并證明;

2)求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A0a),Bb,a),且a,b滿足(a32+|b6|0,現(xiàn)同時將點A,B分別向下平移3個單位,再向左平移2個單位,分別得到點A,B的對應點CD,連接ACBD,AB

1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD

2)在y軸上是否存在一點M,連接MC,MD,使SMCDS四邊形ABCD?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;

3)點P是直線BD上的一個動點,連接PA,PO,當點PBD上移動時(不與BD重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.

(1)證明:∠E=C;

(2)若∠E=55°,求∠BDF的度數(shù);

(3)設DEAB于點G,若DF=4,cosB=,E是弧AB的中點,求EGED的值.

查看答案和解析>>

同步練習冊答案