經(jīng)過點(3,2)的反比例函數(shù)的表達(dá)式為
y=
6
x
y=
6
x
分析:設(shè)出反比例函數(shù)表達(dá)式,然后把點的坐標(biāo)代入進(jìn)行計算即可得解.
解答:解:設(shè)反比例函數(shù)表達(dá)式為y=
k
x
,
∵函數(shù)經(jīng)過點(3,2),
k
3
=2,
解得k=6,
所以,反比例函數(shù)表達(dá)式為y=
6
x

故答案為:y=
6
x
點評:本題考查了待定系數(shù)法求反比例函數(shù)解析式,是求函數(shù)解析式常用的方法,需要熟練掌握并靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中,∠ACB=90°,AC=BC,現(xiàn)將一塊邊長足夠大的直角三角板的直角頂點置于AB的中點O處,兩直角邊分別經(jīng)過點B、C,然后將三角板繞點O按順時針方向旋轉(zhuǎn)一個角度反(0°<a<90°),旋轉(zhuǎn)后,直角三角板的直角邊分別與AC、BC相交于點K、H,四邊形CHOK是旋轉(zhuǎn)過程中三角板與△ABC的重疊部分(如圖1所示).那么,在上述旋轉(zhuǎn)過程中:
(1)如圖1,線段BH與CK具有怎樣的數(shù)量關(guān)系?四邊形CHOK的面積是否發(fā)生變化?請說明你發(fā)現(xiàn)的結(jié)論的理由.
(2)如圖2,連接HK,
①若AK=12,BH=5,求△OKH的面積;
②若AC=BC=4,設(shè)BH=x,當(dāng)△CKH的面積為2時,求x的值,并說出此時四邊形CHOK是什么特殊四邊形.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面上,給定了半徑為r的圓O,對于任意點P,在射線OP上取一點P′,使得OP•OP′=r2,這把點P變?yōu)辄cP的變換叫做反演變換,點P與點P′叫做互為反演點.
(1)如圖2,⊙O內(nèi)外各一點A和B,它們的反演點分別為A和B′.求證:∠A′=∠B;
(2)如果一個圖形上各點經(jīng)過反演變換得到的反演點組成另一個圖形,那么這兩個圖形叫做互為反演圖形.
精英家教網(wǎng)
①選擇:如果不經(jīng)過點O的直線l與⊙O相交,那么它關(guān)于⊙O的反演圖形是( 。
A、一個圓;B、一條直線;C、一條線段;D、兩條射線
②填空:如果直線l與⊙O相切,那么它關(guān)于⊙O的反演圖形是
 
,該圖形與圓O的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,平面直角坐標(biāo)系上有A(a,0)、B(0,-b)、C(b,0)三點,且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m). (m,n為常數(shù),且m+2≥2n>0),經(jīng)過點A和點C,頂點為P
(1)當(dāng)m,n滿足什么關(guān)系時,S△AOB最大;
(3)如圖,當(dāng)△ACP為直角三角形時,判斷以下命題是否正確:“直角三角形DEF的三個頂點都在這條拋物線上,且DF∥x軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請予以證明,不正確請舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浙江一模)如圖1,在平面上,給定了半徑為r的⊙O,對于任意點P,在射線OP上取一點P′,使得OP•OP′=r2,這種把點P變?yōu)辄cP′的變換叫做反演變換,點P與點P′叫做互為反演點,⊙O稱為基圓.
(1)如圖2,⊙O內(nèi)有不同的兩點A、B,它們的反演點分別是A′、B′,則與∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如圖3,⊙O內(nèi)有一點M,請用尺規(guī)作圖畫出點M的反演點M′;(保留畫圖痕跡,不必寫畫法).
(3)如果一個圖形上各點經(jīng)過反演變換得到的反演點組成另一個圖形,那么這兩個圖形叫做互為反演圖形.已知基圓O的半徑為r,另一個半徑為r1的⊙C,作射線OC交⊙C于點A、B,點A、B關(guān)于⊙O的反演點分別是A′、B′,點M為⊙C上另一點,關(guān)于⊙O的反演點為M′.求證:∠A′M′B′=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省廈門市思明區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知,平面直角坐標(biāo)系上有A(a,0)、B(0,-b)、C(b,0)三點,且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m). (m,n為常數(shù),且m+2≥2n>0),經(jīng)過點A和點C,頂點為P
(1)當(dāng)m,n滿足什么關(guān)系時,S△AOB最大;
(3)如圖,當(dāng)△ACP為直角三角形時,判斷以下命題是否正確:“直角三角形DEF的三個頂點都在這條拋物線上,且DF∥x軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請予以證明,不正確請舉出反例.

查看答案和解析>>

同步練習(xí)冊答案