已知點G是△ABC的重心,AD是中線,AG=6,那么DG=________.

3
分析:根據(jù)三角形重心的性質(zhì)進(jìn)行求解.
解答:∵G是△ABC的重心,且AD是中線
∴AG=2GD=6,即DG=3.
點評:此題考查的是三角形重心的性質(zhì):三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點G是△ABC的重心,AG=5,GC=12,AC=13,則BG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、已知點G是△ABC的中線AD、BE的交點,BG=10cm,那么BE=
15
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知點D是△ABC的邊BC(不含點B,C)上的一點,DE∥AB交AC于點E,DF∥AC交AB于點F、要使四邊形AFDE是矩形,則在△ABC中要增加的一個條件是:
∠A=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知點G是△ABC的重心,AG=8,那么點G與邊BC中點之間的距離是
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點G是△ABC的中線AD、BE的交點,BG=20cm,那么BE=
30cm
30cm

查看答案和解析>>

同步練習(xí)冊答案