【題目】如圖,在⊙O中,AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CEAB于點(diǎn)F,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論:①∠BAD=ABC;GP=GD;③點(diǎn)PACQ的外心;④APAD=CQCB.其中正確的是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

【答案】B

【解析】

①錯(cuò)誤,假設(shè)成立,推出矛盾即可;

②正確.想辦法證明∠GPD=∠GDP即可;

③正確.想辦法證明PC=PQ=PA即可;

④正確.證明△APF∽△ABD,可得APAD=AFAB,證明△ACF∽△ABC,可得AC2=AFAB,證明△CAQ∽△CBA,可得AC2=CQCB,由此即可解決問題;

解:①錯(cuò)誤,假設(shè)∠BAD=∠ABC,則弧BD=AC,

AC=CD,

BD=AC=CD,顯然不可能,故①錯(cuò)誤.

②正確.連接OD.

∵GD是切線,

∴DG⊥OD,

∴∠GDP+∠ADO=90°,

∵OA=OD,

∴∠ADO=∠OAD,

∵∠APF+∠OAD=90°,∠GPD=∠APF,

∴∠GPD=∠GDP,

∴GD=GP,故②正確.

③正確.∵AB⊥CE,

AE=AC,

AC=CD,

CD=AE,

∴∠CAD=∠ACE,

∴PC=PA,

∵AB是直徑,

∴∠ACQ=90°,

∴∠ACP+∠QCP=90°,∠CAP+∠CQP=90°,

∴∠PCQ=∠PQC,

∴PC=PQ=PA,

∵∠ACQ=90°,

∴點(diǎn)P是△ACQ的外心.故③正確.

正確.連接BD.

∵∠AFP=∠ADB=90°,∠PAF=∠BAD,

∴△APF∽△ABD,

=,

∴APAD=AFAB,

∵∠CAF=∠BAC,∠AFC=∠ACB=90°,

∴△ACF∽△ABC,

可得AC2=AFAB,

∵∠ACQ=∠ACB,∠CAQ=∠ABC,

∴△CAQ∽△CBA,可得AC2=CQCB,

∴APAD=CQCB.故④正確,

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△

1)在圖中用直尺和圓規(guī)作出的平分線和邊的垂直平分線交于點(diǎn)(保留作圖痕跡,不寫作法).

2)在(1)的條件下,若點(diǎn)、分別是邊上的點(diǎn),且,連接求證:

3)如圖,在(1)的條件下,點(diǎn)分別是、邊上的點(diǎn),且△的周長等于邊的長,試探究的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為 1 的小正方形組成的網(wǎng)格中,有如圖 所示的 A. B 兩點(diǎn),在格點(diǎn)中任 意放置點(diǎn) C,恰好能使ABC 的面積為 1,則這樣的 C 點(diǎn)有 ( )個(gè)

A. 5 個(gè)B. 6 個(gè)C. 7 個(gè)D. 8 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A1,-1),B2,3),點(diǎn)Px軸上一點(diǎn),當(dāng)|PA-PB|的值最大時(shí),點(diǎn)P的坐標(biāo)為(    

A.-1,0B.,0C.0D.1,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

在平面直角坐標(biāo)系xoy中,兩條直線l1y=k1x+b1k1≠0),l2y=k2x+b2k2≠0),①當(dāng)l1l2時(shí),k1=k2,且b1b2;②當(dāng)l1l2時(shí),k1·k2=1

類比應(yīng)用

1)已知直線ly=2x1,若直線l1y=k1x+b1與直線l平行,且經(jīng)過點(diǎn)A(-2,1),試求直線l1的表達(dá)式;

拓展提升

2)如圖,在平面直角坐標(biāo)系xoy中,ABC的頂點(diǎn)坐標(biāo)分別為:A0,2),B40),C(-1,-1),試求出AB邊上的高CD所在直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線相交于點(diǎn),過,交于點(diǎn),交于點(diǎn).,則線段的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為正方形ABCD對(duì)角線的交點(diǎn),EAB邊上一點(diǎn),FBC邊上一點(diǎn),EBF的周長等于BC的長.

(1)若AB=12,BE=3,求EF的長;

(2)求∠EOF的度數(shù);

(3)若OE=OF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E是正方形ABCD的邊CD上一點(diǎn),BFAEF.

(1)求證:△ABF∽△EAD;

(2)當(dāng)AD=2=時(shí),求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小晶和小紅玩擲骰子游戲,每人將一個(gè)各面分別標(biāo)有數(shù)字、、、、的正方體骰子擲一次,把兩人擲得的點(diǎn)數(shù)相加,并約定:若點(diǎn)數(shù)之和等于,則小晶贏;若點(diǎn)數(shù)之和等于,則小紅贏;若點(diǎn)數(shù)之和是其他數(shù),則兩人不分勝負(fù),那么(

A. 小晶贏的機(jī)會(huì)大 B. 小紅贏的機(jī)會(huì)大

C. 小晶、小紅贏的機(jī)會(huì)一樣大 D. 不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案