【題目】閱讀理解
在平面直角坐標(biāo)系xoy中,兩條直線l1:y=k1x+b1(k1≠0),l2:y=k2x+b2(k2≠0),①當(dāng)l1∥l2時(shí),k1=k2,且b1≠b2;②當(dāng)l1⊥l2時(shí),k1·k2=-1.
類比應(yīng)用
(1)已知直線l:y=2x-1,若直線l1:y=k1x+b1與直線l平行,且經(jīng)過(guò)點(diǎn)A(-2,1),試求直線l1的表達(dá)式;
拓展提升
(2)如圖,在平面直角坐標(biāo)系xoy中,△ABC的頂點(diǎn)坐標(biāo)分別為:A(0,2),B(4,0),C(-1,-1),試求出AB邊上的高CD所在直線的表達(dá)式.
【答案】(1)y=2x+5;(2)y=2x+1.
【解析】
(1)利用平行線性質(zhì)可知k值相等,進(jìn)而將P點(diǎn)坐標(biāo)代入l1即可求出直線l1的表達(dá)式;
(2)由題意設(shè)直線AB的表達(dá)式為:y=kx+b,求出直線AB的表達(dá)式,再根據(jù)題意設(shè)AB邊上的高CD所在直線的表達(dá)式為:y=mx+n,進(jìn)行分析求出CD所在直線的表達(dá)式.
解:(1)∵l1∥l,
∴k1=2,
∵直線經(jīng)過(guò)點(diǎn)P(-2,1),
∴1=2×(-2)+b1,b1=5,
∴直線l1表達(dá)式為:y=2x+5.
(2)設(shè)直線AB的表達(dá)式為:y=kx+b
∵直線經(jīng)過(guò)點(diǎn)A(0,2),B(4,0),
∴, 解得:,
∴直線AB的表達(dá)式為:;
設(shè)AB邊上的高CD所在直線的表達(dá)式為:y=mx+n,
∵CD⊥AB,
∴m·()=-1,m=2,
∵直線CD經(jīng)過(guò)點(diǎn)C(-1,-1),
∴-1=2×(-1)+n,n=1,
∴AB邊上的高CD所在直線的表達(dá)式為:y=2x+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.
(1)求BC邊的長(zhǎng);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,,,,對(duì)角線BD平分交AC于點(diǎn)P.CE是的角平分線,交BD于點(diǎn)O.
(1)請(qǐng)求出的度數(shù);
(2)試用等式表示線段BE、BC、CP之間的數(shù)量關(guān)系,并說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將一塊等腰直角三角板ABC的直角頂點(diǎn)C置于直線l上,圖2是由圖1抽象出的幾何圖形,過(guò)A、B兩點(diǎn)分別作直線l的垂線,垂足分別為D、E.
(1)△ACD與△CBE全等嗎?說(shuō)明你的理由.
(2)猜想線段AD、BE、DE之間的關(guān)系.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,慢車的速度是快車速度的,兩車同時(shí)出發(fā).設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.
根據(jù)圖象解決以下問(wèn)題:
(1)甲、乙兩地之間的距離為 km;D點(diǎn)的坐標(biāo)為 ;
(2)求線段BC的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若第二列快車從乙地出發(fā)駛往甲地,速度與第一列快車相同.在第一列快車與慢車相遇30分鐘后,第二列快車追上慢車.求第二列快車比第一列快車晚出發(fā)多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CE⊥AB于點(diǎn)F,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④APAD=CQCB.其中正確的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點(diǎn)E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求證:△AEF∽△ABC:
(2)求正方形EFMN的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市用3000元購(gòu)進(jìn)某種干果銷售,由于銷售狀況良好,很快售完.超市又調(diào)撥9000元資金購(gòu)進(jìn)該種干果,但這次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購(gòu)進(jìn)干果的數(shù)量是第一次的2倍還多300千克,如果超市此時(shí)按每千克9元的價(jià)格出售,當(dāng)大部分干果售出后,余下的100千克按售價(jià)的8折售完.
(1)該種干果的第一次進(jìn)價(jià)是每千克多少元?
(2)超市第二次銷售該種干果盈利了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,重慶某廣場(chǎng)新建與建筑物垂直的空中玻璃走廊與相連,與地面垂直.在處測(cè)得建筑物頂端的仰角為,測(cè)得建筑物處的仰角為(不計(jì)測(cè)量人員的身高),為米.圖中的點(diǎn)、、、、及直線均在同一平面內(nèi).
求、兩點(diǎn)的高度差(結(jié)果精確到米);
為方便游客,廣場(chǎng)從地面上的點(diǎn)新建扶梯,所在斜面的坡度,到地面的距離為米.一廣告牌位于的中點(diǎn)處,市政規(guī)劃要求在點(diǎn)右側(cè)需留出米的行車道,請(qǐng)判斷是否需要挪走廣告牌,并說(shuō)明理由.(參考數(shù)據(jù):,,,,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com