【題目】拋物線上部分點的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:

小聰觀察上表,得出下面結(jié)論:①拋物線與x軸的一個交點為(3,0); ②函數(shù)的最大值為6;③拋物線的對稱軸是;④在對稱軸左側(cè),yx增大而增大.其中正確有(

A. ①②B. ①③C. ①②③D. ①③④

【答案】D

【解析】

利用表中數(shù)據(jù)可拋物線的對稱性得到拋物線的對稱軸為直線,則可利用二次函數(shù)性質(zhì)可對②③進(jìn)行判斷;利用拋物線對稱性得到x=3時,y=0,則可對①進(jìn)行判斷;利用二次函數(shù)的性質(zhì)直接對④進(jìn)行判斷.

x=0y=6;x=1,y=6,

∴拋物線的對稱軸為直線,所以②錯誤,③正確,

x=-2時,y=0,

x=3時,y=0

∴拋物線與x軸的一個交點為(3,0),所以①正確;

a=-10,

∴拋物線開口向下,

∴在對稱軸左側(cè),yx增大而增大.所以④正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為函數(shù)yx0)圖象上一點,過點Px軸、y軸的平行線,分別與函數(shù)yx0)的圖象交于點AB,則AOB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱[此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:

(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;

(2)求圖中t的值;

(3)若小明在通電開機后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機內(nèi)的溫度約為多少℃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連結(jié)AP、OP、OA

1)求證:OCP∽△PDA;

2)若tanPAO,求邊AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標(biāo)牌,測得標(biāo)牌下端D處的仰角為30°,然后他正對大樓方向前進(jìn)5m到達(dá)B處,又測得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場

乙林場

購樹苗數(shù)量

銷售單價

購樹苗數(shù)量

銷售單價

不超過1000棵時

4/

不超過2000棵時

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y(元)、y(元).

1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為   元,若都在乙林場購買所需費用為   元;

2)分別求出y、yx之間的函數(shù)關(guān)系式;

3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于的不等式組有且僅有三個整數(shù)解,且關(guān)于的分式方程的解為整數(shù),則符合條件的整數(shù)的個數(shù)是  

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點O在AB上,BC=CD,過點C作⊙O的切線,分別交AB,AD的延長線于點E,F(xiàn).

1)求證:AF⊥EF;(2)若cosA=,BE=1,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,∠ABC90°,ACAD2,M、N分別為AC、CD的中點,連接BM、MNBN

(1)求證:BMMA;

(2)若∠BAD60°,求BN的長;

(3)當(dāng)∠BAD   °時,BN1(直接填空)

查看答案和解析>>

同步練習(xí)冊答案