【題目】如圖,教室窗戶的高度AF為2.5米,遮陽蓬外端一點(diǎn)D到窗戶上椽的距離為AD,某一時(shí)刻太陽光從教室窗戶射入室內(nèi),與地面的夾角∠BPC為30°,PE為窗戶的一部分在教室地面所形成的影子且長為 米,試求AD的長度.(結(jié)果帶根號)

【答案】解:過點(diǎn)E作EG∥AC交PD于G點(diǎn),
∵EG=EPtan30°= =1,四邊形BFEG是平行四邊形,
∴BF=EG=1,
即AB=AF﹣BF=2.5﹣1=1.5,
在Rt△ABD中, (米),
∴AD的長為 米.
【解析】由題意可知,在三角形ABD中,已知∠D=入射角=30°,求AD,因此必須求出AB或BD,但是和DB相關(guān)聯(lián)的知識(shí)點(diǎn)沒有,必須求出AB,而AF=2.5為已知,因此必須要有BF的值,在做EG∥AC后,四邊形BFEG為平行四邊形,所以EG=BF,綜上所述,EG的長為關(guān)鍵,在直角三角形PEG中,EG=EPtan30°=1,AB=AF﹣BF=AF﹣EG=1.5,在直角三角形ABD中AD= ,故可求得AD的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,兩個(gè)建筑物AB和CD的水平距離為51m,某同學(xué)住在建筑物AB內(nèi)10樓M室,他觀測建筑物CD樓的頂部D處的仰角為30°,測得底部C處的俯角為45°,求建筑物CD的高度.( 取1.73,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ADC中,點(diǎn)B是邊DC上的一點(diǎn),∠DAB=∠C, = .若△ADC的面積為18cm,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x<0時(shí),反比例函數(shù) 的圖像(
A.在第二象限內(nèi),y隨x的增大而減小
B.在第二象限內(nèi),y隨x的增大而增大
C.在第三象限內(nèi),y隨x的增大而減小
D.在第三象限內(nèi),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個(gè)路燈的高度都是9m,則兩路燈之間的距離是m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)﹣2≤x≤1時(shí),二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實(shí)數(shù)m的范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】頂點(diǎn)為(﹣ ,﹣ )的拋物線與y軸交于點(diǎn)A(0,﹣4),E(0,b)(b>﹣4)為y軸上一動(dòng)點(diǎn),過點(diǎn)E的直線y=x+b與拋物線交于B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)①如圖1,當(dāng)b=0時(shí),求證:E是線段BC的中點(diǎn);
②當(dāng)b≠0時(shí),E還是線段BC的中點(diǎn)嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖像與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖像過點(diǎn)A(3,0),與y軸交于點(diǎn)B,求直線AB與這個(gè)二次函數(shù)的解析式;

(3)在直線AB上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AB的距離DE最大時(shí),求點(diǎn)D的坐標(biāo),并求DE最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面完全相同的卡片A,B,C,D,小偉將這四張卡片背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹狀圖(或列表法)表示兩次摸出卡片所有可能出現(xiàn)的結(jié)果(卡片可用A,B,C,D表示);
(2)求摸出兩張卡片所表示的幾何圖形是軸對稱圖形而不是中心對稱圖形的概率.

查看答案和解析>>

同步練習(xí)冊答案