【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖像與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖像過點(diǎn)A(3,0),與y軸交于點(diǎn)B,求直線AB與這個(gè)二次函數(shù)的解析式;

(3)在直線AB上方的拋物線上有一動點(diǎn)D,當(dāng)D與直線AB的距離DE最大時(shí),求點(diǎn)D的坐標(biāo),并求DE最大距離是多少?

【答案】
(1)

解:當(dāng)拋物線與x軸有兩個(gè)交點(diǎn)時(shí),△>0,即4+4m>0,

∴m>﹣1;


(2)

解:∵點(diǎn)A(3,0)在拋物線y=﹣x2+2x+m上,

∴﹣9+6+m=0,∴m=3.

∴拋物線解析式為y=﹣x2+2x+3,且B(0,3),

設(shè)直線AB的解析式為y=kx+b,將A(3,0),B(0,3)代入y=kx+b中,得到

解得 ,

∴直線AB的解析式為y=﹣x+3;


(3)

解:過點(diǎn)D作y軸的垂線,垂足為C,再過點(diǎn)A作AG⊥CD,垂足為G,連接BD,AD,

∵AB為定值,∴當(dāng)DE的值越大時(shí),SADB的面積越大,

設(shè)D(x,y),DC=x,BC=y﹣3,DG=3﹣x,AG=y

∴SADB=S梯形AGCB﹣SBDC﹣SADG,

∴SADB= (y﹣3)x﹣ (3﹣x)y=﹣ (x﹣ 2+ ,

∵a=﹣ <0,

∴當(dāng) 時(shí),SADB的最大值=

代入y=﹣x2+2x+3,得到 ,即D( , ),

又∵SADB= DEAB,且AB= =3 ,

×3 DE=

∴DE=

答:DE的最大值為


【解析】(1)根據(jù)拋物線與x軸有兩個(gè)交點(diǎn)時(shí),△>0,即可得到結(jié)論;(2)把點(diǎn)A(3,0)代入y=﹣x2+2x+m得到﹣9+6+m=0得到B(0,3),解方程組即可得到結(jié)論;(3)過點(diǎn)D作y軸的垂線,垂足為C,再過點(diǎn)A作AG⊥CD,垂足為G,連接BD,AD,得到當(dāng)DE的值越大時(shí),SADB的面積越大,設(shè)D(x,y),DC=x,BC=y﹣3,DG=3﹣x,AG=y根據(jù)圖形的面積公式即可得到結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)的最值和拋物線與坐標(biāo)軸的交點(diǎn),掌握如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a;一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2+2mx與x軸的另一個(gè)交點(diǎn)為A.點(diǎn)P在一次函數(shù)y=2x﹣2m的圖象上,PH⊥x軸于H,直線AP交y軸于點(diǎn)C,點(diǎn)P的橫坐標(biāo)為1.(點(diǎn)C不與點(diǎn)O重合)
(1)如圖1,當(dāng)m=﹣1時(shí),求點(diǎn)P的坐標(biāo).
(2)如圖2,當(dāng) 時(shí),問m為何值時(shí)
(3)是否存在m,使 ?若存在,求出所有滿足要求的m的值,并定出相對應(yīng)的點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,教室窗戶的高度AF為2.5米,遮陽蓬外端一點(diǎn)D到窗戶上椽的距離為AD,某一時(shí)刻太陽光從教室窗戶射入室內(nèi),與地面的夾角∠BPC為30°,PE為窗戶的一部分在教室地面所形成的影子且長為 米,試求AD的長度.(結(jié)果帶根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AD⊥BC于D,AD=200,∠B=30°,∠C=45°.求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B(4,2),BA⊥x軸于A.

(1)畫出將△OAB繞原點(diǎn)旋轉(zhuǎn)180°后所得的△OA1B1 , 并寫出點(diǎn)B1的坐標(biāo);
(2)將△OAB平移得到△O2A2B2 , 點(diǎn)A的對應(yīng)點(diǎn)是A2(2,﹣4),點(diǎn)B的對應(yīng)點(diǎn)B2在坐標(biāo)系中畫出△O2A2B2;并寫出B2的坐標(biāo);
(3)△OA1B1與△O2A2B2成中心對稱嗎?若是,請直接寫出對稱中心點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,O為AB邊上一點(diǎn),⊙O交AB于E,F(xiàn)兩點(diǎn),BC切⊙O于點(diǎn)D,且CD= EF=1.
(1)求證:⊙O與AC相切;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店購進(jìn)一批秋衣,價(jià)格為每件30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每件60元,不低于每件30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100.在銷售過程中,每天還要支付其他費(fèi)用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)求該服裝店銷售這批秋衣日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)當(dāng)銷售單價(jià)為多少元時(shí),該服裝店日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案