【題目】如圖,在平面直角坐標系中,點A在拋物線y=3x2-2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為_______.
科目:初中數(shù)學 來源: 題型:
【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風襲擊,一次,溫州氣象局測得臺風中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南的方向移動,距臺風中心200千米的范圍是受臺風嚴重影響的區(qū)域,試問:
(1)臺風中心在移動過程中離溫州市最近距離是多少千米?
(2)溫州市是否受臺風影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風嚴重影響的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;
(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y= ;
(4)實際上通過計算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個因式分解的等式 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作與證明:
如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷線段MD與MN的關(guān)系,得出結(jié)論;
結(jié)論:DM、MN的關(guān)系是: ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C旋轉(zhuǎn)180°,其他條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,半徑為5的⊙P與y軸交于點M(0,-4),N(0,-10)則第三象限內(nèi)的點P的坐標是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,地震、泥石流等自然災害頻繁發(fā)生,造成極大的生命和財產(chǎn)損失.為了更好地做好“防震減災”工作,我市相關(guān)部門對某中學學生“防震減災”的知曉率采取隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果分為“非常了解”、“比較了解”、“基本了解”和“不了解”四個等級.小明根據(jù)調(diào)查結(jié)果繪制了如圖1、2的統(tǒng)計圖,請根據(jù)提供的信息回答問題:
(1)本次調(diào)查中,樣本容量是________;
(2)扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)的扇形圓心角是________;在該校2000名學生中隨機提問一名學生,對“防震減災”不了解的概率的估計值為________;
(3)請在圖2中補全頻數(shù)分布直方圖.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,點E,F分別是BC,DC上的動點.沿EF 折疊△CEF,使點C的對稱點G落在AD上,若AB=3,BC=5,求CF的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com