分析 (1)求出點(diǎn)C坐標(biāo),利用待定系數(shù)法轉(zhuǎn)化為方程組解決問(wèn)題.
(2)分兩種情形①當(dāng)0<t<$\frac{3}{2}$時(shí),P(t,-$\frac{3}{4}$t+$\frac{9}{4}$t+3),②當(dāng)$\frac{3}{2}$<t<3時(shí),分別求出OM的長(zhǎng)即可解決問(wèn)題.
(3)如圖2中,過(guò)點(diǎn)C作x軸的平行線,過(guò)點(diǎn)B作y軸的平行線,兩直線交于點(diǎn)Q,延長(zhǎng)MK與CQ交于點(diǎn)N,延長(zhǎng)KM與x軸交于點(diǎn)Z,Rt△KBN≌Rt△QBN,推出∠KNB=∠QNB,由NQ∥OB,推出∠QNB=∠NBO=∠KNB,推出ZN=ZB,設(shè)EG交CQ于H,由△HNG≌△FGE,推出CH=OE=t=GH,HN=GE=3-t,推出CN=3-t+3=3,推出NQ=BD=1=NK,設(shè)ZK=m,則ZB=ZN=m+1,在Rt△KZB中,(m+1)2=m2+32,推出m=4,推出ZB=5,于tan∠GZB=$\frac{3}{4}$,tan∠GEF=$\frac{3}{4}$,可得$\frac{t}{3-t}$=$\frac{3}{4}$,求出t即可解決問(wèn)題.
解答 解:(1)對(duì)于直線y=-x+3,令x=0得y=3,
∴C(0,3),把B(4,0),C(0,3)的坐標(biāo)代入y=-$\frac{3}{4}$x2+bx+c得$\left\{\begin{array}{l}{-12+4b+c=0}\\{c=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=\frac{9}{4}}\\{c=3}\end{array}\right.$,
∴拋物線的解析式為y=-$\frac{3}{4}$x2+$\frac{9}{4}$x+3.
(2)如圖1中,當(dāng)0<t<$\frac{3}{2}$時(shí),P(t,-$\frac{3}{4}$t+$\frac{9}{4}$t+3),
∵FG⊥OC,GE⊥OD,CO⊥OD,
∴四邊形FOGE是矩形,
∴OE=FG=t,GE=GD=3-t,
∵M(jìn)G⊥FE,F(xiàn)G⊥GE,
∴∠GEF+∠GFE=90°,∠GFE+∠FGM=90°,
∴∠GEF=∠FGM,
在Rt△FGE中,tan∠FEG=$\frac{FG}{GE}$=$\frac{t}{3-t}$,
∴在Rt△FGM中,tan∠FGM=$\frac{FM}{GF}$=$\frac{t}{3-t}$,
∴FM=$\frac{{t}^{2}}{3-t}$,
∴OM=FO-FM=(3-t)-$\frac{{t}^{2}}{3-t}$=$\frac{9-6t}{3-t}$,
∴S=$\frac{1}{2}$•DE•OM=$\frac{1}{2}$×(3-t)×$\frac{9-6t}{3-t}$=$\frac{9-6t}{2}$,
當(dāng)$\frac{3}{2}$<t<3時(shí),S=$\frac{1}{2}$•DE•OM=$\frac{1}{2}$•DE•(FM-OF)=$\frac{-9+6t}{2}$.
綜上所述,S=$\left\{\begin{array}{l}{\frac{9-6t}{2}}&{(0<t<\frac{3}{2})}\\{\frac{-9+6t}{2}}&{(\frac{3}{2}<t<3)}\end{array}\right.$.
(3)如圖2中,過(guò)點(diǎn)C作x軸的平行線,過(guò)點(diǎn)B作y軸的平行線,兩直線交于點(diǎn)Q,延長(zhǎng)MK與CQ交于點(diǎn)N,延長(zhǎng)KM與x軸交于點(diǎn)Z,
∵CQ∥BO,BQ∥CO,
∴四邊形COBQ是平行四邊形,
∵∠COB=90°,
∴四邊形COBQ是矩形,
∴∠CQB=90°=∠BKN,CO=BQ=3,
對(duì)于直線y=-x+3,令y=0得x=3,
∴D(0,3),
∴OD=OC=BQ=3,
∵BK=OD,
∴BK=BQ,∵BN=BN,
∴Rt△KBN≌Rt△QBN,
∴∠KNB=∠QNB,
∵NQ∥OB,
∴∠QNB=∠NBO=∠KNB,
∴ZN=ZB,設(shè)EG交CQ于H,
∵OC=OB,
∴∠OCD=∠ODC,
∵CQ∥OB,
∴∠QHG=∠HEO=90°,∠HCD=∠CDO,
∴∠OCD=∠HCD,
∵GF⊥OC,GH⊥CH,
∴GH=GF,
∵GM⊥EF,GH⊥HN,
∴∠GEM+∠MGE=90°,∠HGN+∠HNG=90°,
∵∠HGN=∠MGE,
∴∠GEM=∠HNG,
∵∠GFO=∠FOE=∠OEG=90°,
∴∠GEF=90°=∠GHN,
∴△HNG≌△FGE,
∴CH=OE=t=GH,HN=GE=3-t,
∴CN=3-t+3=3,
∴NQ=BD=1=NK,設(shè)ZK=m,則ZB=ZN=m+1,
在Rt△KZB中,(m+1)2=m2+32,
∴m=4,
∴ZB=5,
∴tan∠GZB=$\frac{3}{4}$,tan∠GEF=$\frac{3}{4}$,
∴$\frac{t}{3-t}$=$\frac{3}{4}$,
∴t=$\frac{9}{7}$,
∵拋物線的對(duì)稱軸x=$\frac{3}{2}$,
∴點(diǎn)P到拋物線的對(duì)稱軸的距離為$\frac{3}{2}$-$\frac{9}{7}$=$\frac{3}{14}$.
點(diǎn)評(píng) 本題考查二次函數(shù)綜合題、一次函數(shù)的應(yīng)用、待定系數(shù)法、矩形的性質(zhì)和判定、全等三角形的判定和性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)圓分類討論的思考思考問(wèn)題,學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,學(xué)會(huì)用方程的思想解決問(wèn)題,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5:4:12 | B. | 5:3:12 | C. | 4:3:5 | D. | 2:1:4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -0.07205 | B. | -0.03344 | C. | -0.07205 | D. | -0.003344 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{CD}{EF}$=$\frac{AD}{AF}$ | B. | $\frac{AB}{CD}$=$\frac{BC}{EC}$ | C. | $\frac{AD}{BC}$=$\frac{AF}{BE}$ | D. | $\frac{CE}{BE}$=$\frac{AF}{AD}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{7}{4}$ | C. | $\frac{13}{8}$ | D. | $\frac{31}{16}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若$\sqrt{x-1}$+$\sqrt{1-x}$=y+4,則xy的平方根為1 | B. | 3-2$\sqrt{2}$的絕對(duì)值是2$\sqrt{2}$-3 | ||
C. | 若$\sqrt{{a}^{2}b}$=-a$\sqrt$成立,則a≤0且b≥0 | D. | 若$\sqrt{(1-a)^{2}}$+$\sqrt{(a-3)^{2}}$=2,則a≥3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 不小于$\frac{5}{4}$ m3 | B. | 小于$\frac{5}{4}$ m3 | C. | 不小于$\frac{4}{5}$ m3 | D. | 小于$\frac{4}{5}$ m3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,8) | B. | (3,-8) | C. | (-8,-3) | D. | (-4,-6) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com