如圖,10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),的三個頂點都在格點上.

1)建立如圖所示的直角坐標(biāo)系,請在圖中標(biāo)出的外接圓的圓心的位置,并填寫:

圓心的坐標(biāo):_______,_______;

②⊙的半徑為_______

2)將繞點逆時針旋轉(zhuǎn)得到,畫出圖形,并求線段掃過的圖形的面積.

 

【答案】

15,3,2;2

【解析】

試題分析:(1)利用外接圓的作法得出P點坐標(biāo),進而求出外接圓的半徑即可;

2)根據(jù)勾股定理求出AC,根據(jù)旋轉(zhuǎn)推出ABC的面積等于ADE的面積,根據(jù)線段BC掃過的圖形的面積=S扇形ACE+SABC﹣S扇形ABD﹣SADE,根據(jù)扇形和三角形的面積公式代入求出即可.

試題解析:(1)如圖所示:

圓心P的坐標(biāo):P5,3;

②⊙P的半徑為:,

故答案為:(5,3,2;

2由勾股定理得:AC=2,AB=2,

ABC繞點A逆時針旋轉(zhuǎn)90°得到ADE,

線段BC掃過的圖形的面積=S扇形ACE+SABC﹣S扇形ABD﹣SADE

==8π

考點:旋轉(zhuǎn)變換.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在10×10的方格紙中,有一格點三角形ABC.(說明:頂點都在網(wǎng)格線交點處的三角形叫做格點三角形)
(1)將△ABC先向右平移5格再向下平移2格,畫出平移后的△A′B′C′;
(2)求點A到BC的距離;
(3)在所給的方格紙中,畫一個與△ABC相似、且面積為6個平方單位的格點△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)作圖題:(不要求寫作法)
如圖,在10×10的方格紙中,有一個格點四邊形ABCD(即四邊形的頂點都在格點上).
①在給出的方格紙中,畫出四邊形ABCD向下平移5格后的四邊形A1B1C1D1;
②在給出的方格紙中,畫出四邊形ABCD關(guān)于直線l對稱的圖形A2B2C2D2
精英家教網(wǎng)
(2)某班舉行演講革命故事的比賽中有一個抽獎活動.活動規(guī)則是:進入最后決賽的甲、乙兩位同學(xué),每人只有一次抽獎機會,在如圖所示的翻獎牌正面的4個數(shù)字中任選一個數(shù)字,選中后可以得到該數(shù)字后面的獎品,第一人選中的數(shù)字,第二人就不能再選擇該數(shù)字.
①求第一位抽獎的同學(xué)抽中文具與計算器的概率分別是多少?
②有同學(xué)認為,如果甲先抽,那么他抽到海寶的概率會大些,你同意這種說法嗎?說明理由.
翻獎牌正面:
1 2
3 4
翻獎牌背面:
文具 計算器
計算器 海寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•沈陽模擬)如圖,在10×10的正方形網(wǎng)格中△ABC與△DEF的頂點,都在邊長為1 的小正方形頂點上,且點A與原點重合.
(1)畫出△ABC關(guān)于點B為對稱中心的中心對稱圖形△A′BC′,畫出將△DEF向右平移6個單位且向上平移2個單位的△D′E′F′;
(2)求經(jīng)過A、B、C三點的二次函數(shù)關(guān)系式,并求出頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•濱湖區(qū)一模)如圖,在10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),△ABC的三個頂點都在格點上.
(1)畫出將△ABC向右平移3個單位,再向上平移1個單位所得的△A′B′C′;(友情提醒:對應(yīng)點的字母不要標(biāo)錯!)
(2)建立如圖的直角坐標(biāo)系,請標(biāo)出△A′B′C′的外接圓的圓心P的位置,并寫出圓心P的坐標(biāo):P(
8
8
4
4
);
(3)將△ABC繞BC旋轉(zhuǎn)一周,求所得幾何體的全面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),△ABC的三個頂點都在格點上.
(1)畫出將△ABC向右平移3個單位,再向上平移1個單位所得的△A′B′C′;(友情提醒:對應(yīng)點的字母不要標(biāo)錯!)
(2)建立如圖的直角坐標(biāo)系,請標(biāo)出△A′B′C′的外接圓的圓心P的位置,并寫出圓心P的坐標(biāo):P(______,______);
(3)將△ABC繞BC旋轉(zhuǎn)一周,求所得幾何體的全面積.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊答案