矩形紙片OABC中,OA=5,OC=4.

(1)如圖,在OC邊上取一點(diǎn)D,將紙片沒(méi)AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求OD的長(zhǎng);

(2)如圖,若AE上有一動(dòng)點(diǎn)P(不與A,E重合)自A點(diǎn)沿AE方向向E點(diǎn)以每秒1個(gè)單位長(zhǎng)度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),過(guò)P點(diǎn)作ED的平行線交AD于點(diǎn)M,過(guò)點(diǎn)MAE的平行線交DE于點(diǎn)N,求四邊形PMNE的面積S與t之間的函數(shù)關(guān)系式;當(dāng)t取何值時(shí),S有最大值?最大值是多少?

(3)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,問(wèn):當(dāng)t為何值時(shí),以A、M、E為頂點(diǎn)的三角形為等腰三角形?

答案:
解析:

  解:

  (1)由翻折性質(zhì)可知△DEA≌△DOA,

  ∴∠DEA=∠O=90°,DEDO,AEAO=5 1分

  在RtABE中,BE

  ∴CE=CB-BE=5-3=2 2分

  設(shè)DO=DE=x,則CD=4-x

  在Rt△CDE中,CD2CE2DE2即()2

  解得

  ∴OD=2.5 4分

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)把矩形紙片OABC放人直角坐標(biāo)系中,使OA、OC分別落在x軸和y軸的正半軸上.
(1)將紙片OAB C折疊,使點(diǎn)A與C重合,用直尺和圓規(guī)在原圖上作出折疊后的圖形,并在圖中標(biāo)明折疊后點(diǎn)B的對(duì)應(yīng)點(diǎn)B’(不寫作法,保留作圖痕跡);
(2)在矩形OABC中,連接AC,且AC=2
5
,tan∠OAC=
1
2
,求A、C兩點(diǎn)的坐標(biāo);并求(1)中折痕的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一張矩形紙片OABC放在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)如圖,將紙片沿CE對(duì)折,使點(diǎn)B落在x軸上的點(diǎn)D處,求D點(diǎn)的坐標(biāo);
(2)在(1)中,設(shè)BD與CE的交點(diǎn)為P,如果點(diǎn)B、P在拋物線y=x2+bx+c上,求b、c的值;
(3)如果將矩形紙片沿某直線l對(duì)折,使點(diǎn)B落在坐標(biāo)軸上的點(diǎn)F處,且BF與l的交點(diǎn)Q恰好落在(2)的拋物線上.除了上述的點(diǎn)D外,這樣的點(diǎn)F是否存在?如果存在,求出點(diǎn)F的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA,OC分別落在x軸、y軸上,連接AC,將矩形紙片OABC沿AC折疊,使點(diǎn)B落在點(diǎn)D的位置,若B(1,2),則點(diǎn)D的橫坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•北京)已知:如圖,把矩形紙片OABC放入直角坐標(biāo)系xOy中,使OA、OC分別落在x軸、y軸的正半軸上,連接AC,將△ABC沿AC翻折,點(diǎn)B落在該坐標(biāo)平面內(nèi),設(shè)這個(gè)落點(diǎn)為D,CD交x軸于點(diǎn)E.如果CE=5,OC、OE的長(zhǎng)是關(guān)于x的方程x2+(m-1)x+12=0的兩個(gè)根,并且OC>OE.
(1)求點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)F是AC的中點(diǎn),判斷點(diǎn)(8,-20)是否在過(guò)D、F兩點(diǎn)的直線上,并說(shuō)明現(xiàn)由.

查看答案和解析>>

同步練習(xí)冊(cè)答案