【題目】某電器超市銷售每臺進(jìn)價(jià)分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3臺

5臺

1800元

第二周

4臺

10臺

3100元

(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A,B兩種型號的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

【答案】
(1)解:設(shè)A、B兩種型號電風(fēng)扇的銷售單價(jià)分別為x元、y元,

依題意得:

解得: ,

答:A、B兩種型號電風(fēng)扇的銷售單價(jià)分別為250元、210元


(2)解:設(shè)采購A種型號電風(fēng)扇a臺,則采購B種型號電風(fēng)扇(30﹣a)臺.

依題意得:200a+170(30﹣a)≤5400,

解得:a≤10.

答:超市最多采購A種型號電風(fēng)扇10臺時,采購金額不多于5400元


(3)解:依題意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,

解得:a=20,

∵a≤10,

∴在(2)的條件下超市不能實(shí)現(xiàn)利潤1400元的目標(biāo)


【解析】(1)設(shè)A、B兩種型號電風(fēng)扇的銷售單價(jià)分別為x元、y元,根據(jù)3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,列方程組求解即可;
(2)設(shè)采購A種型號電風(fēng)扇a臺,則采購B種型號電風(fēng)扇(30-a)臺,根據(jù)金額不多余5400元,列不等式求解即可得出答案;
(3)設(shè)利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實(shí)現(xiàn)目標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式或等式組:
(1)10﹣3(x+5)≤1
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,BC=3,AC=4,點(diǎn)P在以C為圓心,5為半徑的圓上,連結(jié)PA,PB.若PB=4,則PA的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月27日“麗水半程馬拉松競賽”在蓮都舉行,某運(yùn)動員從起點(diǎn)萬地廣場西門出發(fā),途經(jīng)紫金大橋,沿比賽路線跑回中點(diǎn)萬地廣場西門.設(shè)該運(yùn)動員離開起點(diǎn)的路程S(千米)與跑步時間t(分鐘)之間的函數(shù)關(guān)系如圖所示,其中從起點(diǎn)到紫金大橋的平均速度是0.3千米/分,用時35分鐘,根據(jù)圖象提供的信息,解答下列問題:

(1)求圖中a的值;

(2)組委會在距離起點(diǎn)2.1千米處設(shè)立一個拍攝點(diǎn)C,該運(yùn)動員從第一次經(jīng)過C點(diǎn)到第二次經(jīng)過C點(diǎn)所用的時間為68分鐘.

①求AB所在直線的函數(shù)解析式;

②該運(yùn)動員跑完賽程用時多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題兩個直角相等的條件是________, 結(jié)論是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=100°,∠ACB=40°,∠ABC的平分線BD交AC于點(diǎn)D,∠ACB的平分線CP交BD于點(diǎn)D.

(1)BD與AC的位置關(guān)系是
(2)求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠BAC=90°,將△ABC沿直線BC向右平移得到△DEF,連結(jié)AD、AE,則下列結(jié)論中不成立的是( )

A.AD∥BE,AD=BE
B.∠ABE=∠DEF
C.ED⊥AC
D.△ADE為等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l經(jīng)過點(diǎn)(0,﹣2),且直線lx軸.若直線l與二次函數(shù)y3x2+a的圖象交于A,B兩點(diǎn),與二次函數(shù)y=﹣2x2+b的圖象交于C,D兩點(diǎn),其中ab為整數(shù).若AB2,CD4.則ba的值為(  )

A.9B.11C.16D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點(diǎn)O按每秒4°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少?
(3)將圖1中的三角板繞點(diǎn)O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚骸螦OM與∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案