分析 由條件可先證明EC∥DB,可得到∠D=∠ABD,再結(jié)合條件兩直線平行的判定可證明AC∥DF,依次填空即可.
解答 解:∵∠1=∠2(已知)
且∠1=∠3(對(duì)頂角相等)
∴∠2=∠3(等量代換)
∴EC∥DB(同位角相等,兩直線平行)
∴∠C=∠ABD(兩直線平行,同位角相等)
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代換)
∴AC∥DF(內(nèi)錯(cuò)角相等,兩直線平行)
故答案為:對(duì)頂角相等;BD,CE;兩條直線平行,同位角相等;∠ABD,∠D;內(nèi)錯(cuò)角相等,兩條直線平行.
點(diǎn)評(píng) 本題主要考查了平行線的判定與性質(zhì)的運(yùn)用,解題時(shí)注意:平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由平行關(guān)系來(lái)尋找角的數(shù)量關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 90° | B. | 100° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1或7 | B. | 1或-7 | C. | -1或-7 | D. | ±1或±7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{14}$×$\sqrt{7}$=7$\sqrt{2}$ | B. | ($\sqrt{2}$-1)2016($\sqrt{2}$+1)2016=1 | ||
C. | $\root{3}{(-8)^{3}}$=-8 | D. | 3$\sqrt{2}$-$\sqrt{2}$=3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com