【題目】某工廠用天時間生產(chǎn)一款新型節(jié)能產(chǎn)品,每天生產(chǎn)的該產(chǎn)品被某網(wǎng)店以每件元的價格全部訂購,在生產(chǎn)過程中,由于技術(shù)的不斷更新,該產(chǎn)品第天的生產(chǎn)成本(元/件)與(天)之間的關(guān)系如圖所示,第天該產(chǎn)品的生產(chǎn)量(件)與(天)滿足關(guān)系式

天,該廠生產(chǎn)該產(chǎn)品的利潤是   元;

設(shè)第天該廠生產(chǎn)該產(chǎn)品的利潤為元.

①求之間的函數(shù)關(guān)系式,并指出第幾天的利潤最大,最大利潤是多少?

②在生產(chǎn)該產(chǎn)品的過程中,當天利潤不低于元的共有多少天?

【答案】(1)1600;(2)①,第天的利潤最大,最大利潤為元;②當天利潤不低于元的共有天.

【解析】

由圖象可知,第天時的成本為元,此時的產(chǎn)量為,則可求得第天的利潤.

利用每件利潤×總銷量=總利潤,進而求出二次函數(shù)最值即可.

由圖象可知,第天時的成本為元,此時的產(chǎn)量為

則第天的利潤為:

故答案為

①設(shè)直線AB的解析式為代入得

,解得

直線的解析式為

時,

時,

的增大而減小

天的利潤最大,最大利潤為

時,令

解得

拋物線開口向下

由其圖象可知,當時,

此時,當天利潤不低于元的天數(shù)為:

時,

由①可知當天利潤均低于

綜上所述,當天利潤不低于元的共有天.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=CD,若點E、F分別為邊BC、CD上的兩點,且∠EAF=CAD

1)求證:△ADF∽△ACE;

2)求證:AE=EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+cba0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實數(shù)根;③a-b+c0;④的最小值為3,其中正確結(jié)論的個數(shù)是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

1)求出拋物線的頂點坐標、對稱軸、最小值;

2)求出拋物線與x軸、y軸交點坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù) y的圖象與一次函數(shù)ymxb的圖象交于兩點A1,3,Bn,1).

1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;

2)根據(jù)圖象,直接回答:當x取何值時,一次函數(shù)的值大于反比例函數(shù)的值;

3)連接AO、BO,求ABO的面積;

4)在y軸上存在點P,使AOP為等腰三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O半徑為,AB是⊙O的一條弦,且AB=3,則弦AB所對的圓周角度數(shù)是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點IABC的內(nèi)心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點與I重合,則圖中陰影部分的周長為( 。

A. 4.5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點AB(點A位于點B的左側(cè)),與y軸交于點C(0,-3),點D在二次函數(shù)的圖象上,CD∥AB,連接AD.過點A作射線AE交二次函數(shù)的圖象于點E,AB平分∠DAE

1)用含m的代數(shù)式表示a;

2)求證:為定值;

3)設(shè)該二次函數(shù)圖象的頂點為F.探索:在x軸的負半軸上是否存在點G,連接CF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數(shù)式表示該點的橫坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C、D是半圓O上的三等分點,直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點F.

(1)求∠AFE的度數(shù);

(3)求陰影部分的面積(結(jié)果保留π和根號).

查看答案和解析>>

同步練習冊答案