【題目】如圖所示,一位籃球運(yùn)動員在離籃圈水平距離為4m處跳起投籃,球沿一條拋物線運(yùn)行,當(dāng)球運(yùn)行的水平距離為2.5m時,達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心離地面距離為3.05m.
(1)建立如圖所示的直角坐標(biāo)系,求拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)若該運(yùn)動員身高1.8m,這次跳投時,球在他頭頂上方0.25m處出手.問:球出手時,他跳離地面多高?
【答案】(1)y=-0.2x2+3.5;(2)0.2m.
【解析】本題主要考查了二次函數(shù)的應(yīng)用
(1)通過拋物線頂點(diǎn)坐標(biāo),求出所求拋物線的關(guān)系式為,把D點(diǎn)坐標(biāo)代入即可
(2)建立合適的平面直角坐標(biāo)系,求出二次函數(shù)解析式,把相應(yīng)的x的值代入拋物線解析式,求得球出手時的高度,減去0.25和運(yùn)動員的身高即為該運(yùn)動員離地面的高度.
(1)圖中各點(diǎn)字母表示如答圖所示.
∵OA=2.5,AB=4,∴OB=4-2.5=1.5.
∴點(diǎn)D坐標(biāo)為(1.5,3.05).
∵拋物線頂點(diǎn)坐標(biāo)(0,3.5),
∴設(shè)所求拋物線的關(guān)系式為y=ax2+3.5,
把D(1.5, 3.05)代入上式,得3.05=a×1.52+3.5,
∴a="-0." 2,∴y=-0.2x2+3.5
(2)∵OA=2.5,∴設(shè)C點(diǎn)坐標(biāo)為(2.5,m),
∴把C(2.5,m)代入y=-0.2x2+3.5,
得m="-" 0.2×2.52+3.5=2.25.
∴該運(yùn)動員跳離地面高度h=m-(1.8+0.25)=2.25-(1.8+0.25)=0.2(m).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四個數(shù):2,﹣3,﹣4,5,任取其中兩個數(shù)相乘,所得積的最大值是( )
A. 20B. 12C. 10D. ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的父母為他購買了5000元的三年教育儲蓄,年利率為2.7%,那么三年后的利息是( )
A. 135B. 5270C. 5405D. 405
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種襯衫每件的標(biāo)價為120元,如果每件以8折(即標(biāo)價的80%)出售,那么這種襯衫每件的實(shí)際售價為_________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD, CD=6,BC=4,∠ABD =∠C,P是CD上的一個動點(diǎn)(P不與點(diǎn)C點(diǎn)D重合),且滿足條件:∠BPE =∠C, 交BD于點(diǎn)E.
(1) 求證:△BCP∽△PDE;
(2)如果CP= x , BE=y,求y與x之間的函數(shù)關(guān)系式;
(3)P點(diǎn)在運(yùn)動過程中,△BPE能否成為等腰三角形,若能,求 x的值 ,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于代數(shù)式“﹣x+1”所表示的意義的說法中正確的是( )
A. x的相反數(shù)與1的和B. x與1的和的相反數(shù)
C. 負(fù)x加1的和D. x與1的相反數(shù)的和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)分解因式:x4y﹣6x3y+9x2y
(2)先化簡.再求值:[2x(x2y+xy2)﹣xy(xy+x2)]÷x2y,其中x,y互為相反數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com