【題目】如圖所示,OB是∠AOC的平分線,OD是∠COE的平分線.
(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度數(shù);
(2)若∠AOE=160°,∠COD=40°,求∠AOB的度數(shù).
【答案】(1)∠BOD==85°;∠AOB=40°.
【解析】試題分析:(1)、根據(jù)角平分線的性質(zhì)分別求出∠COB和∠COD的度數(shù),然后根據(jù)∠BOD=∠BOC+∠COD得出答案;(2)、根據(jù)OD是角平分線求出∠COE的度數(shù),然后根據(jù)∠AOC=∠AOE-∠COE求出∠AOC的度數(shù),最后根據(jù)OB為角平分線得出∠AOB的度數(shù).
試題解析:解:(1)∵OB是∠AOC的平分線,OD是∠COE的平分線,∴∠COB=∠BOA=50°,∠COD=∠DOE=35°,∴∠BOD=∠COB+∠COD=50°+35°=85°.
(2)∵OD是∠COE的平分線,∴∠COE=2∠COD=2×40°=80°,∴∠AOC=∠AOE-∠COE=160°-80°=80°,
又∵OB是∠AOC的平分線,∴∠AOB=∠AOC=×80°=40°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,CD是AB邊上的中線,延長AB至點(diǎn)E,使BE=AB,連接CE. 請你探究:
(1)當(dāng)∠BAC為直角時(shí),直接寫出線段CE與CD之間的數(shù)量關(guān)系;
(2)當(dāng)∠BAC為銳角或鈍角時(shí),(1)中的上述數(shù)量關(guān)系是否仍然成立?若成立,請給出證明;若不成立,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)規(guī)定學(xué)生的學(xué)期體育成績滿分為100分,其中課外體育占20%,期中考試成績占30%,期末考試成績占50%.小彤的三項(xiàng)成績(百分制)依次為95、90、88,則小彤這學(xué)期的體育成績?yōu)?/span>( )
A. 89 B. 90 C. 92 D. 93
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的為8,B是數(shù)軸上一點(diǎn),且AB=14,動點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示);
(2)動點(diǎn)H從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,若點(diǎn)P、H同時(shí)出發(fā),問點(diǎn)P運(yùn)動多少秒時(shí)追上點(diǎn)H?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則下面結(jié)論錯(cuò)誤的是( )
A.BF=EF
B.DE=EF
C.∠EFC=45°
D.∠BEF=∠CBE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,時(shí)鐘是我們常見的生活必需品,其中蘊(yùn)含著許多數(shù)學(xué)知識.
(1)我們知道,分針和時(shí)針轉(zhuǎn)動一周都是 度,分針轉(zhuǎn)動一周是 分鐘,時(shí)針轉(zhuǎn)動一周有12小時(shí),等于720分鐘;所以,分針每分鐘轉(zhuǎn)動 度,時(shí)針每分鐘轉(zhuǎn)動 度.
(2)從5:00到5:30,分針與時(shí)針各轉(zhuǎn)動了多少度?
(3)請你用方程知識解釋:從1:00開始,在1:00到2:00之間,是否存在某個(gè)時(shí)刻,時(shí)針與分針在同一條直線上?若不存在,說明理由;若存在,求出從1:00開始經(jīng)過多長時(shí)間,時(shí)針與分針在同一條直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠C,點(diǎn)E在線段AC上,D在AB的延長線上,且有BD=CE,連接DE交BC于F,過E作FG⊥BC于G.試說明線段EF、FG、CG之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AB=3,BC=4.當(dāng)平行四邊形ABCD的面積最大時(shí)。下列結(jié)論正確的有( )
①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.
A.①②③
B.①②④
C.②③④
D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com