【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.

【答案】D
【解析】解:解法一:逐項(xiàng)分析
A、由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=﹣mx2+2x+2開口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;
B、由函數(shù)y=mx+m的圖象可知m<0,對(duì)稱軸為x= = = <0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;
C、由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=﹣mx2+2x+2開口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;
D、由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=﹣mx2+2x+2開口方向朝上,對(duì)稱軸為x= = = <0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;
解法二:系統(tǒng)分析
當(dāng)二次函數(shù)開口向下時(shí),﹣m<0,m>0,
一次函數(shù)圖象過一、二、三象限.
當(dāng)二次函數(shù)開口向上時(shí),﹣m>0,m<0,
對(duì)稱軸x= <0,
這時(shí)二次函數(shù)圖象的對(duì)稱軸在y軸左側(cè),
一次函數(shù)圖象過二、三、四象限.
故選:D.
本題主要考查一次函數(shù)和二次函數(shù)的圖象所經(jīng)過的象限的問題,關(guān)鍵是m的正負(fù)的確定,對(duì)于二次函數(shù)y=ax2+bx+c,當(dāng)a>0時(shí),開口向上;當(dāng)a<0時(shí),開口向下.對(duì)稱軸為x= ,與y軸的交點(diǎn)坐標(biāo)為(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖

(1)2018在第________,________;

(2)由五個(gè)數(shù)組成的

這五個(gè)數(shù)的和可能是2019,為什么?

如果這五個(gè)數(shù)的和是60,直接寫出這五個(gè)數(shù);

(3)如果這五個(gè)數(shù)的和能否是2025,若能請(qǐng)求出這5個(gè)數(shù);若不能請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,DBC的中點(diǎn),DEBC,CEAD.

(1)求證:四邊形ACED是平行四邊形;

(2)若AC=2,CE=4,求四邊形ACEB的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長都是1個(gè)單位長度,Rt△ABC的三個(gè)頂點(diǎn)A(﹣2,2),B(0,5),C(0,2).

(1)①將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫出△A1B1C的圖形.
②平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(﹣2,﹣6),請(qǐng)畫出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2 , 請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(k﹣1)x2 x+ =0有實(shí)數(shù)根,則k的取值范圍是(
A.k為任意實(shí)數(shù)
B.k≠1
C.k≥0
D.k≥0且k≠1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程
(1)4(x﹣2)2﹣81=0.
(2)x2﹣3x+2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADB、BCD都是等邊三角形,點(diǎn)E,F分別是AB,AD上兩個(gè)動(dòng)點(diǎn)滿足AE=DF連接BF與DE相交于點(diǎn)G,CHBF,垂足為H連接CG若DG=,BG=、滿足下列關(guān)系:,則GH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3
(1)用配方法將y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)在直角坐標(biāo)系中,用五點(diǎn)法畫出它的圖像;

(3)利用圖象求當(dāng)x為何值時(shí),函數(shù)值y<0
(4)當(dāng)x為何值時(shí),y隨x的增大而減。
(5)當(dāng)﹣3<x<3時(shí),觀察圖象直接寫出函數(shù)值y的取值的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā)沿圖中某一個(gè)扇形順時(shí)針勻速運(yùn)動(dòng),設(shè)∠APB=y(單位:度),如果y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點(diǎn)P的運(yùn)動(dòng)路線可能為( )

A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O

查看答案和解析>>

同步練習(xí)冊(cè)答案