【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b與x軸正半軸交于點(diǎn)A,與y軸負(fù)半軸交于點(diǎn)B,圓心P在x軸的正半軸上,已知AB=10,AP=

(1)求點(diǎn)P到直線AB的距離;

(2)求直線y=kx+b的解析式;

(3)在圖中存在點(diǎn)Q,使得BQO=90°,連接AQ,請(qǐng)求出AQ的最小值.

【答案】(1)(2)y=﹣x+6(3)

【解析】

(1)先根據(jù)垂徑定理求出得出AD=5,最后用勾股定理即可得出結(jié)論;(2)設(shè)出OP=x,利用勾股定理即可得出OP的值,最后用待定系數(shù)法即可得出結(jié)論;(3)先確定出AQ取得最小值時(shí)的條件,最后用勾股定理即可得出結(jié)論.

(1)如圖,過點(diǎn)P作PDAB于D,由垂徑定理得AD=DB=AB=5

在RtAPD中,由AD=5,AP=

根據(jù)勾股定理得,得PD2+AD2=AP2

則PD=

點(diǎn)P到直線AB的距離為;

(2)連接BP,設(shè)OP=x

∵OB2=BP2﹣OP2,OB2=AB2﹣OA2

∴OB2=(2﹣x2,OB2=102﹣(+x)2

∴(2﹣x2=102﹣(+x)2

解得:x=,

∴OA=8,OB=6,

∴A(8,0),B(0,6),

,

直線AB的解析式為y=﹣x+6;

(3)解:如圖②,∵∠OQB=90°,

點(diǎn)Q是以O(shè)B為直徑的圓上,

以O(shè)B為直徑作圓E,連接EQ,AE,

∴EQ+AQ≥AE

當(dāng)點(diǎn)A,Q,E三點(diǎn)在一直線上時(shí),AQ有最小值,

在RtAOE中,AE=,

AQ的最小值為AE﹣OE=﹣3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的平面直角坐標(biāo)系中有一個(gè)正六邊形ABCDEF,其中C.D的坐標(biāo)分別為(1,0)和(2,0).若在無滑動(dòng)的情況下,將這個(gè)六邊形沿著x軸向右滾動(dòng),則在滾動(dòng)過程中,這個(gè)六邊形的頂點(diǎn)A.B.C.D.E、F中,會(huì)過點(diǎn)(45,2)的是點(diǎn)  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聯(lián)想與探索:

如圖1,將線段A1A2本向右平移1個(gè)單位長(zhǎng)度至B1B2,得到封閉圖形A1A2B2B1(即陰影部分),在圖2中,將折線A1A2A3向右平移1個(gè)單位長(zhǎng)度至B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).

(1)在圖3中,請(qǐng)你類似地畫一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位長(zhǎng)度,從而得到一個(gè)封閉圖形,并用陰影表示;

(2)請(qǐng)你分別寫出上述三個(gè)圖形中除去陰影部分后剩余部分的面積(設(shè)長(zhǎng)方形水平方向長(zhǎng)均為a,豎直方向長(zhǎng)均為b) S1= ,S2= ,S3= ;

(3)如圖4,在一塊長(zhǎng)方形草地上,有一條彎曲的小路(小路任何地方的水平寬度都是2個(gè)單位長(zhǎng)度,長(zhǎng)方形水平方向長(zhǎng)為a,豎直方向長(zhǎng)為b),則空白部分表示的草地面積是多少?

(4)如圖5,若在(3)中的草地上又有一條橫向的曲小路(小路任何地方的寬度都是1個(gè)單位長(zhǎng)度),則空白部分表示的草地面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE⊥OD,OE平分∠AOF.

(1)∠BOD∠DOF相等嗎?請(qǐng)說明理由.

(2)若∠DOF=∠BOE,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 一個(gè)數(shù)的平方等于它的本身的數(shù)是____________

平方根等于它的本身的數(shù)是______________

算術(shù)平方根等于它的本身的數(shù)是__________

立方根等于它的本身的數(shù)是______________

大于0且小于π的整數(shù)是________________

滿足<x <的整數(shù)x_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,AC=BC=4cm,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)E從點(diǎn)B出發(fā)以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)F同時(shí)從點(diǎn)C出發(fā)以一定的速度沿射線CA方向運(yùn)動(dòng),規(guī)定:當(dāng)點(diǎn)E到終點(diǎn)C時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)的時(shí)間為x秒,連接DE、DF.

(1)填空:SABC=   cm2;

(2)當(dāng)x=1且點(diǎn)F運(yùn)動(dòng)的速度也是1cm/s時(shí),求證:DE=DF;

(3)若動(dòng)點(diǎn)F以3cm/s的速度沿射線CA方向運(yùn)動(dòng);在點(diǎn)E、點(diǎn)F運(yùn)動(dòng)過程中,如果有某個(gè)時(shí)間x,使得ADF的面積與BDE的面積存在兩倍關(guān)系,請(qǐng)你直接寫出時(shí)間x的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菲爾茲獎(jiǎng)是國(guó)際上享有崇高聲譽(yù)的一個(gè)數(shù)學(xué)獎(jiǎng)項(xiàng),每4年評(píng)選一次,頒給有卓越貢獻(xiàn)的年輕數(shù)學(xué)家,被視為數(shù)學(xué)界的諾貝爾獎(jiǎng).下面的數(shù)據(jù)是從1936年至2014年45歲以下菲爾茲獎(jiǎng)得住獲獎(jiǎng)時(shí)的年齡(歲): 39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37
34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38
34 33 40 36 36 37 31 38 38 37 35 40 39 37
請(qǐng)根據(jù)以上數(shù)據(jù),解答以下問題:
(1)小彬按“組距為5”列出了如下的頻數(shù)分布表,每組數(shù)據(jù)含最小值不含最大值,請(qǐng)將表中空缺的部分補(bǔ)充完整,并補(bǔ)全頻數(shù)分布直方圖:

分組

頻數(shù)

A:25~30

B:30~35

15

C:35~40

31

D:40~45

計(jì)

50


(2)在(1)的基礎(chǔ)上,小彬又畫出了如圖所示的扇形統(tǒng)計(jì)圖,圖中B組所對(duì)的圓心角的度數(shù)為;
(3)根據(jù)(1)中的頻數(shù)分布直方圖試描述這50位菲爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡的分布特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=10,BC=12,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B的方向在AB上移動(dòng),動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),按B→C的方向在BC上移動(dòng)(當(dāng)P點(diǎn)到達(dá)點(diǎn)B時(shí),P點(diǎn)和Q點(diǎn)停止移動(dòng),且兩點(diǎn)的移動(dòng)速度相等),記PA=x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一根繩子對(duì)折成一條線段AB,在線段AB取一點(diǎn)P,使AP,P處把繩子剪斷,若剪斷后的三段繩子中最長(zhǎng)的一段為30cm,則繩子的原長(zhǎng)為______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案