【題目】如圖,直線AB、CD相交于點(diǎn)O,OE⊥OD,OE平分∠AOF.
(1)∠BOD與∠DOF相等嗎?請(qǐng)說(shuō)明理由.
(2)若∠DOF=∠BOE,求∠AOD的度數(shù).
【答案】(1)∠BOD=∠DOF,理由詳見(jiàn)解析;(2)∠AOD=150°.
【解析】
(1)由OE⊥OD知∠EOF+∠DOF=90°,∠AOE+∠BOD=90°,根據(jù)∠AOE=∠EOF即可得∠BOD=∠DOF;
(2)由∠DOF=∠BOE可∠DOF=x°,則∠BOE=4x°,∠BOD=x°,從而得∠DOE=∠BOE﹣∠BOD=3x°,根據(jù)∠DOE=90°可得x的值,繼而根據(jù)∠AOD=180°﹣∠BOD即可得出答案.
解:(1)∠BOD=∠DOF,
∵OE⊥OD,
∴∠DOE=90°,
∴∠EOF+∠DOF=90°,∠AOE+∠BOD=90°,
∵OE平分∠AOF,
∴∠AOE=∠EOF,
∴∠BOD=∠DOF;
(2)∵∠DOF=∠BOE,
∴設(shè)∠DOF=x°,則∠BOE=4x°,∠BOD=x°,
∴∠DOE=∠BOE﹣∠BOD=3x°,
∵∠DOE=90°,
∴3x=90,即x=30,
∴∠BOD=30°,
∴∠AOD=180°﹣∠BOD=150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五四”期間,小張購(gòu)進(jìn)100只兩種型號(hào)的文具進(jìn)行銷(xiāo)售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:
型號(hào) | 進(jìn)價(jià)(元/只) | 售價(jià)(元/只) |
A型 | 10 | 12 |
B型 | 15 | 23 |
(1)設(shè)購(gòu)進(jìn)A型文具x只,銷(xiāo)售利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式?
(2)要使銷(xiāo)售文具所獲利潤(rùn)最大,且所獲利潤(rùn)不超過(guò)進(jìn)貨價(jià)格的40%,請(qǐng)你幫小張?jiān)O(shè)計(jì)一個(gè)進(jìn)貨方案,并求出其所獲利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“囧”像一個(gè)人臉郁悶的神情.如圖,邊長(zhǎng)為a的正方形紙片,剪去兩個(gè)一樣的小直角三角形(陰影部分)和一個(gè)長(zhǎng)方形(陰影部分)得到一個(gè)“囧”字圖案,設(shè)剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)分別為x、y,剪去的小長(zhǎng)方形長(zhǎng)和寬也分別為x,y.
(1)用含a、x、y的式子表示“囧”的面積;
(2)當(dāng)a=12,x=7,y=4時(shí),求該圖形面積的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.
(1)請(qǐng)寫(xiě)出圖中所有∠EOC的補(bǔ)角 ____________________;
(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,5)、B(1,0)、C(4,0).
(1)畫(huà)出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1,并寫(xiě)出A1點(diǎn)的坐標(biāo);
(2)在y軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,并求出點(diǎn)P的坐標(biāo)及△PAB的周長(zhǎng)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解答過(guò)程:如圖甲,AB∥CD,探索∠P與∠A,∠C之間的關(guān)系.
解:過(guò)點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁?xún)?nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁?xún)?nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD 相交于點(diǎn)O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點(diǎn)引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2﹣6x+c與x軸交于點(diǎn)A、B(5,0),與y軸交于點(diǎn)C(0,5),點(diǎn)P是拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t,連接PB、PC,PC與x軸交于點(diǎn)D,過(guò)點(diǎn)P作y軸的平行線交x軸于點(diǎn)H、交直線BC于點(diǎn)E.
(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)若點(diǎn)P在第四象限,則△BPC的面積有值(填“最大”或“最小”),并求出其值;
(3)當(dāng)t<5時(shí),△BPE能否為等腰三角形?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD是正方形,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止;動(dòng)點(diǎn)Q從A出發(fā),以1cm/s的速度沿邊AD勻速運(yùn)動(dòng)到D終止,若P、Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts,△APQ的面積為Scm2 . S與t之間函數(shù)關(guān)系的圖象如圖2所示.
(1)求圖2中線段FG所表示的函數(shù)關(guān)系式;
(2)當(dāng)動(dòng)點(diǎn)P在邊AB運(yùn)動(dòng)的過(guò)程中,若以C、P、Q為頂點(diǎn)的三角形是等腰三角形,求t的值;
(3)是否存在這樣的t,使PQ將正方形ABCD的面積恰好分成1:3的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com