【題目】如圖所示,污水處理公司為某樓房建一座周長為30米的三級污水處理池,平面圖為矩形米,中間兩條隔墻分別為、,池墻的厚度不考慮.

(1)用含的代數(shù)式表示外圍墻的長度;

(2)如果設(shè)計時要求矩形水池恰好被隔墻分成三個全等的矩形,且它們均與矩形相似,求此時的長;

(3)如果設(shè)計時要求矩形水池恰好被隔墻分成三個全等的正方形.已知池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價每米300元,池底建造的單價為每平方米100元.試計算此項工程的總造價.(結(jié)果精確到1元)

【答案】(1)AD=15-x;(2);(3)18469.

【解析】

試題(1)根據(jù)矩形的周長等于相鄰兩邊和的2倍,可求AD=15-x(米);

(2)根據(jù)題意可知,即,且,據(jù)此可列方程,求出AB的長;

(3)根據(jù)題意可知AD=3x米,則有15-x=3x,求出x的值即可求出總造價.

試題解析:(1)米;

(2)由題意可知,,即,且

解得:(不合題意,舍去)

(3)由題意知米,則有

解得

總造價:=

當(dāng)時,原式=(元)

答:此項工程的總造價約為18469元.

考點: (1)一元二次方程的應(yīng)用;(2)一元一次方程的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△DBE是繞點B旋轉(zhuǎn)的兩個相似三角形,其中∠ABC與∠DBE、∠A與∠D為對應(yīng)角.

(1)如圖①,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點B、CD在同一條直線上的位置時,請直接寫出線段AD與線段EC的關(guān)系;

(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個三角形旋轉(zhuǎn)到如圖②的位置時,試確定線段AD與線段EC的關(guān)系,并說明理由;

(3)若△ABC和△DBE為如圖③的兩個三角形,且∠ACBα,∠BDEβ,在繞點B旋轉(zhuǎn)的過程中,直線ADEC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC外接圓上的點,且BD位于AC的兩側(cè),DEAB,垂足為E,DE的延長線交此圓于點FBGAD,垂足為G,BGDE于點H,DCFB的延長線交于點P,且PC=PB

(1)求證:∠BAD=PCB;

(2)求證:BGCD;

(3)設(shè)ABC外接圓的圓心為O,若AB=DHCOD=23°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;

(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,C,D⊙O,AB5,BC3.

(1) sin∠BAC的值;

(2) 如果OE⊥AC, 垂足為E,OE的長;

(3) tan∠ADC的值.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉(zhuǎn)時始終滿足OAOB=OP2,我們就把∠APB叫做∠MON的智慧角.

(1)如圖2,已知∠MON=90°,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°.求證:∠APB是∠MON的智慧角.

(2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子分別表示∠APB的度數(shù)和△AOB的面積.

(3)如圖3,C是函數(shù)y=(x>0)圖象上的一個動點,過C的直線CD分別交x軸和y軸于A,B兩點,且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結(jié)論有________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為半圓O的直徑,C、D是半圓O上的兩點,若直徑AB的長為4,且BC=2,∠DAC=15°.

(1)∠DAB的度數(shù);

(2)求圖中陰影部分的面積(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標(biāo)是  ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點C2的坐標(biāo)是   ;

(3)A2B2C2的面積是   平方單位.

查看答案和解析>>

同步練習(xí)冊答案