【題目】如圖,直線l經(jīng)過(guò)⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于點(diǎn)Q.是否存在點(diǎn)P,使得QP=QO;若存在,求出相應(yīng)的∠OCP的大;若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.
【答案】40°、20°、100°.
【解析】
點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),因而點(diǎn)P與線段AO有三種位置關(guān)系,在線段AO上,點(diǎn)P在OB上,點(diǎn)P在OA的延長(zhǎng)線上.分這三種情況進(jìn)行討論即可.
①根據(jù)題意,畫出圖(1),
在△QOC中,OC=OQ,
∴∠OQC=∠OCP,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠AOC=30°,
∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,
即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
整理得,3∠OCP=120°,
∴∠OCP=40°.
②當(dāng)P在線段OA的延長(zhǎng)線上(如圖2)
∵OC=OQ,
∴∠OQP=(180°﹣∠QOC)×①,
∵OQ=PQ,
∴∠OPQ=(180°﹣∠OQP)×②,
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得∠QOC=20°,則∠OQP=80°
∴∠OCP=100°;
③當(dāng)P在線段OA的反向延長(zhǎng)線上(如圖3),
∵OC=OQ,
∴∠OCP=∠OQC=(180°﹣∠COQ)×①,
∵OQ=PQ,
∴∠P=(180°﹣∠OQP)×②,
∵∠AOC=30°,
∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
①②③④聯(lián)立得
∠P=10°,
∴∠OCP=180°﹣150°﹣10°=20°.
故答案為:40°、20°、100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明騎電動(dòng)車從甲地去乙地,而小剛騎自行車從乙地去甲地,兩人同時(shí)出發(fā)走相同的路線;設(shè)小剛行駛的時(shí)間為x(h),兩人之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系,點(diǎn)B的坐標(biāo)為(,0).根據(jù)圖象進(jìn)行探究:
(1)兩地之間的距離為______km;
(2)請(qǐng)解釋圖中點(diǎn)B的實(shí)際意義;
(3)求兩人的速度分別是每小時(shí)多少km?
(4)直接寫出點(diǎn)C的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形紙片ABCD的邊長(zhǎng)為2,∠ABC=60°,翻折∠B,∠D,使點(diǎn)B,D兩點(diǎn)重合于對(duì)角線BD上一點(diǎn)P,EF,GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是菱形ABCD的中心;②當(dāng)x= 時(shí),EF+GH>AC;③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是 ;④當(dāng)0<x<2時(shí),六邊形AEFCHG周長(zhǎng)的值不變.其中正確結(jié)論是________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為1cm的⊙P的圓心在直線AB上,且與點(diǎn)O的距離為6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移動(dòng),那么________秒種后⊙P與直線CD相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)∠AOB的平分線上一點(diǎn)C作CD∥OB交OA于點(diǎn)D,E是線段OC的中點(diǎn),過(guò)點(diǎn)E作直線分別交射線CD,OB于點(diǎn)M,N,探究線段OD,ON,DM之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:∠AOB=30°,點(diǎn)P是∠AOB 內(nèi)部及射線OB上一點(diǎn),且OP=10cm.
(1)若點(diǎn)P在射線OB上,過(guò)點(diǎn)P作關(guān)于直線OA的對(duì)稱點(diǎn),連接O、P, 如圖①求P的長(zhǎng).
(2)若過(guò)點(diǎn)P分別作關(guān)于直線OA、直線OB的對(duì)稱點(diǎn)、,連接O、O、如圖②, 求的長(zhǎng).
(3)若點(diǎn)P在∠AOB 內(nèi),分別在射線OA、射線OB找一點(diǎn)M,N,使△PMN的周長(zhǎng)取最小值,請(qǐng)直接寫出這個(gè)最小值.如圖③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說(shuō):“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請(qǐng)判斷丙的說(shuō)法是否正確并說(shuō)明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知排球場(chǎng)的長(zhǎng)度OD為18 m,位于球場(chǎng)中線處球網(wǎng)的高度AB為2.4 m,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.6 m的C點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為6 m時(shí),到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系
(1) 當(dāng)球上升的最大高度為3.4 m時(shí),對(duì)方距離球網(wǎng)0.4 m的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1 m,問(wèn)這次她是否可以攔網(wǎng)成功?請(qǐng)通過(guò)計(jì)算說(shuō)明
(2) 若隊(duì)員發(fā)球既要過(guò)球網(wǎng),又不出邊界,問(wèn)排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒(méi)出界)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計(jì)算這10位居民一周內(nèi)使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com