【題目】在△ABC中,∠CAB=45°,BD⊥AC于點(diǎn)D,AE⊥BC于點(diǎn)E,DF⊥AB于點(diǎn)F,AE與DF交于點(diǎn)G,連接BG.
(1)求證:AG=BG;
(2)已知AG=5,BE=4,求AE的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的,任意一個實(shí)數(shù)在數(shù)軸上都能找到與之對應(yīng)的點(diǎn),比如我們可以在數(shù)軸上找到與數(shù)字2對應(yīng)的點(diǎn).
(1)在如圖所示的數(shù)軸上,畫出一個你喜歡的無理數(shù),并用點(diǎn)表示;
(2)(1)中所取點(diǎn)表示的數(shù)字是______,相反數(shù)是_____,絕對值是______,倒數(shù)是_____,其到點(diǎn)5的距離是______.
(3)取原點(diǎn)為,表示數(shù)字1的點(diǎn)為,將(1)中點(diǎn)向左平移2個單位長度,再取其關(guān)于點(diǎn)的對稱點(diǎn),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏的爸爸買了某項(xiàng)體育比賽的一張門票,她和哥哥兩人都很想去觀看.可門票只有一張,讀九年級的哥哥想了一個辦法,拿了8張撲克牌,將數(shù)字為2,3,5,9的四張牌給小敏,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小敏和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將兩人抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小敏去;如果和為奇數(shù),則哥哥去.
【1】請用畫樹形圖或列表的方法求小敏去看比賽的概率;
【2】哥哥設(shè)計(jì)的游戲規(guī)則公平嗎?若公平,請說明理由;若不公平,請你設(shè)計(jì)一種公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下內(nèi)容,再解決問題.
在把多項(xiàng)式m2﹣4mn﹣12n2進(jìn)行因式分解時,雖然它不符合完全平方公式,但是經(jīng)過變形,可以利用完全平方公式進(jìn)行分解:
m2﹣4mn﹣12n2=m2﹣4mn+4n2﹣4n2﹣12n2=(m﹣2n)2﹣16n2=(m﹣6n)(m+2n),像這樣構(gòu)造完全平方式的方法我們稱之為“配方法”,利用這種方法解決下面問題.
(1)把多項(xiàng)式因式分解:a2﹣6ab+5b2;
(2)已知a、b、c為△ABC的三條邊長,且滿足4a2﹣4ab+2b2+3c2﹣4b﹣12c+16=0,試判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)如圖1,若BC=3,AB=5,則ctanB= ;
(2)ctan60°= ;
(3)如圖2,已知:△ABC中,∠B是銳角,ctan C=2,AB=10,BC=20,試求∠B的余弦cosB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年5月20日是第22個中國學(xué)生營養(yǎng)日,某校社會實(shí)踐小組在這天開展活動,調(diào)查快餐營養(yǎng)情況.他們從食品安全監(jiān)督部門獲取了一份快餐的信息(如圖).根據(jù)信息,解答下列問題.
(1)求這份快餐中所含脂肪質(zhì)量;
(2)若碳水化合物占快餐總質(zhì)量的40%,求這份快餐所含蛋白質(zhì)的質(zhì)量;
(3)若這份快餐中蛋白質(zhì)和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物質(zhì)量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,C是BA延長線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過點(diǎn)B作BQ⊥CP于Q,交⊙O于H.
(1)如圖1,求證:PQ=PE;
(2)如圖2,G是圓上一點(diǎn),∠GAB=30,連接AG交PD于F,連接BF,tan∠BFE=,求∠C的度數(shù);
(3)如圖3,在(2)的條件下,PD=6,連接QG交BC于點(diǎn)M,求QM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)y1=mx2﹣6mx+8m(m為常數(shù)).
(1)若函數(shù)y1經(jīng)過點(diǎn)(1,3),求函數(shù)y1的表達(dá)式;
(2)若m<0,當(dāng)x<時,此二次函數(shù)y隨x的增大而增大,求a的取值范圍;
(3)已知一次函數(shù)y2=x﹣2,當(dāng)y1y2>0時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形, △ABC與△A′ B′ C′是關(guān)于點(diǎn)0為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)畫出位似中心點(diǎn)0;
(2)求出△ABC與△A′B′C′的位似比;
(3)以點(diǎn)0為位似中心,再畫一個△A1B1C1,使它與△ABC的位似比等于1.5.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com