【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場(chǎng)前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試營(yíng)銷,售價(jià)為8元/件,工作人員對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷售量減少5件.
(1)第24天的日銷售量是件,日銷售利潤(rùn)是元.
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)日銷售利潤(rùn)不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤(rùn)是多少元?
【答案】
(1)330;660
(2)解:設(shè)線段OD所表示的y與x之間的函數(shù)關(guān)系式為y=kx,
將(17,340)代入y=kx中,
340=17k,解得:k=20,
∴線段OD所表示的y與x之間的函數(shù)關(guān)系式為y=20x.
根據(jù)題意得:線段DE所表示的y與x之間的函數(shù)關(guān)系式為y=340﹣5(x﹣22)=﹣5x+450.
聯(lián)立兩線段所表示的函數(shù)關(guān)系式成方程組,
得 ,解得: ,
∴交點(diǎn)D的坐標(biāo)為(18,360),
∴y與x之間的函數(shù)關(guān)系式為y= .
(3)解:當(dāng)0≤x≤18時(shí),根據(jù)題意得:(8﹣6)×20x≥640,
解得:x≥16;
當(dāng)18<x≤30時(shí),根據(jù)題意得:(8﹣6)×(﹣5x+450)≥640,
解得:x≤26.
∴16≤x≤26.
26﹣16+1=11(天),
∴日銷售利潤(rùn)不低于640元的天數(shù)共有11天.
∵點(diǎn)D的坐標(biāo)為(18,360),
∴日最大銷售量為360件,
360×2=720(元),
∴試銷售期間,日銷售最大利潤(rùn)是720元.
【解析】解:(1)340﹣(24﹣22)×5=330(件), 330×(8﹣6)=660(元).
所以答案是:330;660.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】里約奧運(yùn)會(huì)后,受到奧運(yùn)健兒的感召,群眾參與體育運(yùn)動(dòng)的熱度不減,全民健身再次成為了一種時(shí)尚,球場(chǎng)上也出現(xiàn)了更多年輕人的身影.請(qǐng)問下面四幅球類的平面圖案中,是中心對(duì)稱圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形OAB與反比例函數(shù)y= (k>0,x>0)的圖象交于A、B兩點(diǎn),將△OAB沿直線OB翻折,得到△OCB,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C,線段CB交x軸于點(diǎn)D,則 的值為 . (已知sin15°= )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上的兩點(diǎn),∠BAC=∠DAC,過點(diǎn)C做直線EF⊥AD,交AD的延長(zhǎng)線于點(diǎn)E,連接BC.
(1)求證:EF是⊙O的切線;
(2)若DE=1,BC=2,求劣弧 的長(zhǎng)l.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是菱形,∠BAD=60°,AB=6,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E在AC上,若OE= ,則CE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線y=x﹣3經(jīng)過B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)C作直線CD⊥y軸交拋物線于另一點(diǎn)D,點(diǎn)P是直線CD下方拋物線上的一個(gè)動(dòng)點(diǎn),且在拋物線對(duì)稱軸的右側(cè),過點(diǎn)P作PE⊥x軸于點(diǎn)E,PE交CD于點(diǎn)F,交BC于點(diǎn)M,連接AC,過點(diǎn)M作MN⊥AC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段MN的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,連接PC,過點(diǎn)B作BQ⊥PC于點(diǎn)Q(點(diǎn)Q在線段PC上),BQ交CD于點(diǎn)T,連接OQ交CD于點(diǎn)S,當(dāng)ST=TD時(shí),求線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,﹣1),B(3,﹣1),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以2個(gè)單位/秒的速度運(yùn)動(dòng).過P作PQ⊥OA于Q.設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2),△OPQ與四邊形OABC重疊的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線的解析式并確定頂點(diǎn)M的坐標(biāo);
(2)用含t的代數(shù)式表示P、Q兩點(diǎn)的坐標(biāo);
(3)將△OPQ繞P點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q落在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由;
(4)求S與t的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ED為⊙O的直徑且ED=4,點(diǎn)A(不與E、D重合)為⊙O上一個(gè)動(dòng)點(diǎn),線段AB經(jīng)過點(diǎn)E,且EA=EB,F(xiàn)為⊙O上一點(diǎn),∠FEB=90°,BF的延長(zhǎng)線交AD的延長(zhǎng)線交于點(diǎn)C.
(1)求證:△EFB≌△ADE;
(2)當(dāng)點(diǎn)A在⊙O上移動(dòng)時(shí),直接回答四邊形FCDE的最大面積為多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com