(2004•黃岡)若直角三角形的三邊長分別為2,4,x,則x的可能值有( )
A.1個
B.2個
C.3個
D.4個
【答案】分析:x可為斜邊也可為直角邊,因此解本題時要對x的取值進行討論.
解答:解:當x為斜邊時,x2=22+42=20,所以x=2;
當4為斜邊時,x2=16-4=12,x=2
故選B.
點評:本題考查了勾股定理的應用,注意要分兩種情況討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•黃岡)在直角坐標系XOY中,O為坐標原點,A,B,C三點的坐標分別為A(5,0),B(0,4),C(-1,0).點M和點N在x軸上(點M在點N的左邊),點N在原點的右邊,作MP⊥BN,垂足為P(點P在線段BN上,且點P與點B不重合),直線MP與y軸相交于點G,MG=BN.
(1)求經(jīng)過A,B,C三點的拋物線的表達式;
(2)求點M的坐標;
(3)設ON=t,△MOG的面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍;
(4)過點B作直線BK平行于x軸,在直線BK上是否存在點R,使△ORA為等腰三角形?若存在,請直接寫出點R的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年某市一中高中保送生考試數(shù)學試卷(浙教版)(解析版) 題型:解答題

(2004•黃岡)在直角坐標系XOY中,O為坐標原點,A,B,C三點的坐標分別為A(5,0),B(0,4),C(-1,0).點M和點N在x軸上(點M在點N的左邊),點N在原點的右邊,作MP⊥BN,垂足為P(點P在線段BN上,且點P與點B不重合),直線MP與y軸相交于點G,MG=BN.
(1)求經(jīng)過A,B,C三點的拋物線的表達式;
(2)求點M的坐標;
(3)設ON=t,△MOG的面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍;
(4)過點B作直線BK平行于x軸,在直線BK上是否存在點R,使△ORA為等腰三角形?若存在,請直接寫出點R的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:解答題

(2004•黃岡)在直角坐標系XOY中,O為坐標原點,A,B,C三點的坐標分別為A(5,0),B(0,4),C(-1,0).點M和點N在x軸上(點M在點N的左邊),點N在原點的右邊,作MP⊥BN,垂足為P(點P在線段BN上,且點P與點B不重合),直線MP與y軸相交于點G,MG=BN.
(1)求經(jīng)過A,B,C三點的拋物線的表達式;
(2)求點M的坐標;
(3)設ON=t,△MOG的面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍;
(4)過點B作直線BK平行于x軸,在直線BK上是否存在點R,使△ORA為等腰三角形?若存在,請直接寫出點R的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:選擇題

(2004•黃岡)若直角三角形的三邊長分別為2,4,x,則x的可能值有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案