【題目】補全下列解題過程:

如圖,OD是∠AOC的平分線,且∠BOC-AOB=40°,若∠AOC=120°,求∠BOD的度數(shù).

解:∵OD是∠AOC的平分線,AOC=120°

∴∠DOC=_______=______°.

∵∠BOC+_____=120°,∠BOC-AOB=40°

∴∠BOC=80°

∴∠BOD=BOC-______=______°

【答案】見解析.

【解析】

先根據(jù)角平分線的定義求出∠DOC的度數(shù),再由∠BOC+AOB=120°,∠BOC-AOB=40°得出∠BOC的度數(shù),根據(jù)∠BOD=BOC-DOC即可得出結論.

OD是∠AOC的平分線,∠AOC=120°,

∴∠DOC=AOC=60°

∵∠BOC+AOB=120°,∠BOC-AOB=40°,

∴∠BOC=80°

∴∠BOD=BOC-DOC=20°;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若把邊長為1的正方形ABCD的四個角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來正方形面積的 ,請說明理由.(寫出證明及計算過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知在數(shù)軸上有A、 B兩點,點A表示的數(shù)是-6,點B表示的數(shù)是9.點P在數(shù)軸上從點A出發(fā),以每秒2個單位的速度沿數(shù)軸正方向運動,同時,點Q在數(shù)軸上從點B出發(fā),以每秒3個單位的速度沿數(shù)軸負方向運動,當點Q到達點A時,兩點同時停止運動,設運動時間為t秒.

(1) AB=____ ;當t=1時,點Q表示的數(shù)是___ ;當t=___時,P、Q兩點相遇;

(2)如圖2,若點M為線段AP的中點,點N為線段BP中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由.若不變,請求出線段MN的長;

(3)如圖3,若點M為線段的AP中點,點T為線段BQ中點,則點M表示的數(shù)為______;點T表示的數(shù)為______;MT=______ (用含t的代數(shù)式填空)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班在一次班會課上,就遇見路人摔倒后如何處理的主題進行討論,并對全班 50 名學生的處理方式進行統(tǒng)計,得出相關統(tǒng)計表和統(tǒng)計圖.

組別

A

B

C

D

處理方式

迅速離開

馬上救助

視情況而定

只看熱鬧

人數(shù)

m

30

n

5

請根據(jù)表圖所提供的信息回答下列問題:

(1)統(tǒng)計表中的 m= ,n= ;

(2)補全頻數(shù)分布直方圖;

(3)若該校有 2000 名學生,請據(jù)此估計該校學生采取馬上救助方式的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB2,BF8,BCAE6,CECF7,則△CDF與四邊形ABDE的面積比值是( )

A. 11 B. 21 C. 12 D. 23

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠A30°,AB5,點PAC上的動點,連接BP,以BP為邊作等邊△BPQ,連接CQ,則點P在運動過程中,線段CQ長度的最小值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(﹣1,-2),點A是該圖象第一象限分支上的動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,AC與x軸交于點D,當=時,則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD,EF分別交AB、CDG、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。

A. 120° B. 125° C. 135° D. 145°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知一個多邊形的內(nèi)角和是它的外角和的 3 倍,求這個多邊形的邊數(shù).

(2)如圖,點F ABC 的邊 BC 延長線上一點.DFAB,A=30°,F=40°,求∠ACF 的度數(shù).

查看答案和解析>>

同步練習冊答案