【題目】圖①、②分別是某種型號跑步機(jī)的實物圖與示意圖.已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m).
(參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
【答案】1.1m.
【解析】試題分析:過C點作FG⊥AB于F,交DE于G.在Rt△ACF中,根據(jù)CF=ACsin∠CAF求出CF的長,在Rt△CDG中,根據(jù)CG=CDsin∠CDE求出CG的長,然后根據(jù)FG=FC+CG計算即可.
試題解析:解:過C點作FG⊥AB于F,交DE于G.
∵CD與地面DE的夾角∠CDE為12°,∠ACD為80°,
∴∠ACF=90°+12°﹣80°=22°,
∴∠CAF=68°,
在Rt△ACF中,CF=ACsin∠CAF≈0.744m,
在Rt△CDG中,CG=CDsin∠CDE≈0.336m,
∴FG=FC+CG≈1.1m.
故跑步機(jī)手柄的一端A的高度約為1.1m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)為( ) ①柱體的上、下兩個面一樣大;②圓柱的側(cè)面展開圖是長方形;③正方體有6個頂點;④圓錐有2個面,且都是曲面;⑤球僅由1個面圍成,這個面是平面;⑥三棱柱有5個面,且都是平面.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小彬和小明每天早晨堅持跑步,小彬每秒跑4米,小明每秒跑6米.
(1)如果他們站在百米跑道的兩端同時相向起跑,那么幾秒后兩人相遇?
(2)如果小明站在百米跑道的起點處,小彬站在他前面10米處,兩人同時同向起跑,幾秒后小明能追上小彬?
(2)如果他們都站在四百米環(huán)形跑道的起點處,兩人同時同向起跑,幾分鐘后他們再次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新學(xué)期,兩摞規(guī)格相同的數(shù)學(xué)課本整齊的疊放在講臺上,請根據(jù)圖中所給出的數(shù)據(jù)信息,解答下列問題:
(1)每本書的高度為 cm,課桌的高度為 cm;
(2)當(dāng)課本數(shù)為x(本)時,請寫出同樣疊放在桌面上的一摞數(shù)學(xué)課本高出地面的距離 (用含x的代數(shù)式表示);
(3)桌面上有55本與題(1)中相同的數(shù)學(xué)課本,整齊疊放成一摞,若有18名同學(xué)各從中取走1本,求余下的數(shù)學(xué)課本高出地面的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點O是直線AB上的一點, ,OD、OE分別是、 的角平分線.
(1)求的度數(shù);
(2)寫出圖中與互余的角;
(3)圖中有的補(bǔ)角嗎?若有,請把它找出來,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是( )
A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標(biāo)及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點E不是邊BC的中點,F(xiàn)不是邊CD的中點,且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com