【題目】如圖,將一矩形紙片ABCD折疊,使兩個頂點A,C重合,折痕為FG.若AB=4,BC=8,則△ABF的面積為

【答案】6
【解析】解:∵將一矩形紙片ABCD折疊,使兩個頂點A,C重合,折痕為FG,
∴FG是AC的垂直平分線,
∴AF=CF,
設AF=FC=x,
在Rt△ABF中,有勾股定理得:AB2+BF2=AF2
42+(8﹣x)2=x2 ,
解得:x=5,
即CF=5,BF=8﹣5=3,
∴△ABF的面積為 ×3×4=6,
故答案為:6.
根據(jù)折疊的性質(zhì)求出AF=CF,根據(jù)勾股定理得出關于CF的方程,求出CF,求出BF,根據(jù)面積公式求出即可.本題考查了矩形的性質(zhì),折疊的性質(zhì),勾股定理的應用,能得出關于x的方程是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AC⊥AB,AB=2 ,AC=2,點D是以AB為直徑的半圓O上一動點,DE⊥CD交直線AB于點E,設∠DAB=α(0°<α<90°).
(1)當α=18°時,求 的長;
(2)當α=30°時,求線段BE的長;
(3)若要使點E在線段BA的延長線上,則α的取值范圍是(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Pn表示n邊形的對角線的交點個數(shù)(指落在其內(nèi)部的交點),如果這些交點都不重合,那么Pn與n的關系式是:Pn= (n2﹣an+b)(其中a,b是常數(shù),n≥4)
(1)通過畫圖,可得:四邊形時,P4= ;五邊形時,P5=
(2)請根據(jù)四邊形和五邊形對角線交點的個數(shù),結(jié)合關系式,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,AC經(jīng)過點O,與⊙O分別相交于點D,C.若∠ACB=30°,AB= ,則陰影部分的面積是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關系式;
(2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聊城“水城之眼”摩天輪是亞洲三大摩天輪之一,也是全球首座建筑與摩天輪相結(jié)合的城市地標,如圖,點O是摩天輪的圓心,長為110米的AB是其垂直地面的直徑,小瑩在地面C點處利用測角儀測得摩天輪的最高點A的仰角為33°,測得圓心O的仰角為21°,則小瑩所在C點到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)( 。

A.169米
B.204米
C.240米
D.407米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)7月1日﹣7月7日一周天氣預報如圖,小麗打算選擇這期間的一天或兩天去該景區(qū)旅游,求下列事件的概率:

(1)隨機選擇一天,恰好天氣預報是晴;
(2)隨機選擇連續(xù)的兩天,恰好天氣預報都是晴.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

同步練習冊答案