【題目】兩棵樹(shù)(大樹(shù)和小樹(shù))在一盞路燈下的影子如圖所示

(1)確定路燈燈泡的位置(用點(diǎn)P表示)和表示婷婷的影長(zhǎng)的線段(用線段AB表示).

(2)若小樹(shù)高為2m,影長(zhǎng)為4m;婷婷高1.5m,影長(zhǎng)為4.5米,且婷婷距離小樹(shù)10米,試求出路燈燈泡的高度.

【答案】(1)見(jiàn)解析(2)路燈燈泡的高度為10.5m

【解析】

(1)根據(jù)中心投影的特點(diǎn)可知,連接物體和它影子的頂端所形成的直線必定經(jīng)過(guò)點(diǎn)光源.所以分別把兩棵樹(shù)的頂端和影子的頂端連接并延長(zhǎng)可交于一點(diǎn),即點(diǎn)光源的位置,連接PC并延長(zhǎng)交QA的延長(zhǎng)線與點(diǎn)B,即可得;
(2)由DFPQDEF∽△QEP,根據(jù)相似三角形的性質(zhì)有,即①,同理可得,即②,聯(lián)立①②可得PQ.

(1)如圖,點(diǎn)P即為燈泡所在位置;

線段AB即為婷婷的影長(zhǎng);

(2)如圖,由題意知,DF=2,DE=4,DA=10,AC=1.5,AB=4.5,

DFPQ,

∴△DEF∽△QEP,

,即,

CAPQ,

∴△CAB∽△PQB,

,即,

由①②可得PQ=10.5,

答:路燈燈泡的高度為10.5m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BGAE,垂足為G,BG=,則CEF的周長(zhǎng)為( 。

A. 8 B. 9.5 C. 10 D. 11.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩漁船同時(shí)從港口O出發(fā)外出捕魚(yú),乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為________海里/小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的個(gè)數(shù)有(

x2+kx+25 是一個(gè)完全平方式,則 k 的值等于 10;

一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形;

順次連接平行四邊形的各邊中點(diǎn),構(gòu)成的四邊形是菱形;

黃金分割比的值為0.618.

A. 0 個(gè) B. 1 個(gè) C. 2 個(gè) D. 3 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 y=﹣x+2 與反比例函數(shù) y=(k≠0)的圖象交于 A(a,3)、B(3,b)兩點(diǎn),直線 AB y 軸于點(diǎn) C、交 x 軸于點(diǎn) D.

(1)請(qǐng)直接寫(xiě)出 a=_______,b=______,反比例函數(shù)的解析式為_______

(2) x 軸上是否存在一點(diǎn) E,使得EBD=OAC,若存在請(qǐng)求出點(diǎn) E 的坐標(biāo), 若不存在,請(qǐng)說(shuō)明理由.

(3)點(diǎn)P x 軸上的動(dòng)點(diǎn),點(diǎn) Q 是平面內(nèi)的動(dòng)點(diǎn),是以 A、B、P、Q 為頂點(diǎn)的四邊形是矩形,若存在請(qǐng)求出點(diǎn) Q 的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在ABC中,∠ACB=30°

(1)如圖1,當(dāng)ABAC=2,求BC的值;

(2)如圖2,當(dāng)ABAC,點(diǎn)PABC內(nèi)一點(diǎn),且PA=2,PB,PC=3,求∠APC的度數(shù);

(3)如圖3,當(dāng)AC=4,ABCBCA),點(diǎn)PABC內(nèi)一動(dòng)點(diǎn),則PA+PB+PC的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,AB=AC.D 是 BC 上一點(diǎn),且 AD=BD.將△ABD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到△ACE.

(1)求證:AE∥BC;

(2)連結(jié) DE,判斷四邊形 ABDE 的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)二次函數(shù)的圖象,三位同學(xué)分別說(shuō)出了它的一些特點(diǎn):

甲:對(duì)稱軸為直線x=4

乙:與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)都是整數(shù).

丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個(gè)點(diǎn)為頂點(diǎn)的三角形面積為3.請(qǐng)你寫(xiě)出滿足上述全部特點(diǎn)的一個(gè)二次函數(shù)解析式__________________

查看答案和解析>>

同步練習(xí)冊(cè)答案