23、如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,B、C、G三點(diǎn)在一條直線上,且邊長(zhǎng)分別為2和3,在BG上截取GP=2,連接AP、PF.
(1)觀察猜想AP與PF之間的大小關(guān)系,并說(shuō)明理由;
(2)圖中是否存在通過(guò)旋轉(zhuǎn)、平移、反射等變換能夠互相重合的兩個(gè)三角形?若存在,請(qǐng)說(shuō)明變換過(guò)程;若不存在,請(qǐng)說(shuō)明理由;
(3)若把這個(gè)圖形沿著PA、PF剪成三塊,請(qǐng)你把它們拼成一個(gè)大正方形,在原圖上畫(huà)出示意圖,并請(qǐng)求出這個(gè)大正方形的面積.
分析:(1)證AP與PF所在的三角形全等即可;
(2)將(1)中的△ABP先平移后旋轉(zhuǎn)得到△PGF;
(3)大正方形的面積是由原來(lái)的正方形的面積分割而成的,所以等于S正方形ABCD的面積+S正方形ECGF的面積
解答:解:
(1)猜想PA=PF;
理由:∵正方形ABCD、正方形ECGF,
∴AB=BC=2,CG=FG=3,∠B=∠G=90°,
∵PG=2,
∴BP=2+3-2=3=FG,AB=PG,
∴△ABP≌△PGF,
∴PA=PF.

(2)存在,是△ABP和△PGF,
變換過(guò)程:把△ABP先向右平移5個(gè)單位,使AB在GF邊上,B與G重合,
再繞G點(diǎn)逆時(shí)針旋轉(zhuǎn)90度,就可與△PGF重合.(答案不唯一)

(3)如圖:
S大正方形的面積=S正方形ABCD的面積+S正方形ECGF的面積=4+9=13.
點(diǎn)評(píng):線段相等通常是證明線段所在的三角形全等,圖形的變換要根據(jù)全等三角形來(lái)判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案