【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) 分別是軸正半軸, 軸正半軸上兩動點(diǎn), , ,以, 為鄰邊構(gòu)造矩形,拋物線軸于點(diǎn), 為頂點(diǎn), 軸于點(diǎn)

)求, 的長(結(jié)果均用含的代數(shù)式表示);

)當(dāng)時,求該拋物線的表達(dá)式;

)在點(diǎn)在整個運(yùn)動過程中,若存在是等腰三角形,請求出所有滿足條件的的值.

【答案】1, ;(2;(3

【解析】試題分析:1)點(diǎn)Dy=-x2+3x+k上,且在y軸上,即y=0求出點(diǎn)D坐標(biāo),根據(jù)拋物線頂點(diǎn)公式,求出即可;

2)先用k表示出相關(guān)的點(diǎn)的坐標(biāo),根據(jù)PM=BM建立方程即可;

3)先用k表示出相關(guān)的點(diǎn)的坐標(biāo),根據(jù)ADP是等腰三角形,分三種情況,AD=APDA=DP,PA=PD計算.

試題解析:( )把代入 ,

,

,

又∵,

,

拋物線表達(dá)式為

)當(dāng)在矩形外時,

如圖,過點(diǎn),

當(dāng)時,

,

,

中, ,

,

當(dāng)在矩形內(nèi)部時,

時,如圖,過,

,

又∵,

,

當(dāng)時,如圖3,過

,

,

中, ,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系第一象限中,已知點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,動點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度勻速向點(diǎn)方向運(yùn)動,與此同時,軸上動點(diǎn)從點(diǎn)出發(fā),以相同的速度向右運(yùn)動, 兩動點(diǎn)運(yùn)動時間為:, 分別為邊作矩形 過點(diǎn)作雙曲線交線段于點(diǎn),作中點(diǎn),連接

1)當(dāng)時,求點(diǎn)的坐標(biāo).

2)若平分 的值為多少?

3)若為直角, 的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.

(1)若∠EOC=80°,求∠BOD的度數(shù);

(2)若∠EOC=EOD,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行社的一則廣告如下:我社推出去井岡山紅色旅游,收費(fèi)標(biāo)準(zhǔn)為:如果組團(tuán)人數(shù)不超過30人,人均收費(fèi)800元;如果人數(shù)多于30人,那么每增加1人,人均收費(fèi)降低10元,但人均收費(fèi)不得低于500元,甲公司想分批組織員工到井岡山紅色旅游學(xué)習(xí).

1)如果第一批組織38人去學(xué)習(xí),則公司應(yīng)向旅行社交費(fèi)   元;

2)如果公司計劃用29250元組織第一批員工去學(xué)習(xí),問這次旅游學(xué)習(xí)應(yīng)安排多少人參加?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ ABCD中,點(diǎn)E、F在對角線BD上,且BEDF.

(1)求證:AECF;

(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BD的垂直平分線交ADE,交BCF,連接BE DF.

1)判斷四邊形BEDF的形狀,并說明理由;

2)若AB=8,AD=16,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD,∠A=∠C=100°,E、FCD上,且滿足∠DBF=∠ABDBE平分∠CBF

1)直線ADBC有何位置關(guān)系?請說明理由.

2)求∠DBE的度數(shù).

3)若把AD左右平行移動,在平行移動AD的過程中,是否存在某種情況,使∠BEC=ADB?若存在,求出此時∠ADB的度數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案