【題目】如圖,在平面直角坐標(biāo)第中有一個2×2的正方形網(wǎng)格,每個格點(diǎn)的橫、縱坐標(biāo)均為整數(shù),已知點(diǎn)A(12).作直線OA并向右平移k個單位,要使分布在平移后的直線兩側(cè)的格點(diǎn)數(shù)相同,則k的值為(

A.B.C.D.1

【答案】C

【解析】

依據(jù)平移后的直線兩側(cè)的格點(diǎn)數(shù)相同,可得平移后的直線經(jīng)過點(diǎn)B23),再根據(jù)AOBC,即可得到直線BC的解析式,進(jìn)而得到點(diǎn)C的坐標(biāo),據(jù)此可得平移的距離.

如圖所示,

設(shè)直線OAy=ax,則

由點(diǎn)A12),可得2=a,

又∵平移后的直線兩側(cè)的格點(diǎn)數(shù)相同,

∴平移后的直線經(jīng)過點(diǎn)B2,3),

設(shè)直線BC的解析式為y=2x+b,則

B2,3),可得3=4+b,

解得b=-1,

y=2x-1,

y=0,則x=,

C,0),

OC=,

k的值為,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是,點(diǎn)Cx軸上的一個動點(diǎn).當(dāng)點(diǎn)Cx軸上移動時,始終保持是等腰直角三角形(,點(diǎn)A、CP按逆時針方向排列);當(dāng)點(diǎn)C移動到點(diǎn)O時,得到等腰直角三角形(此時點(diǎn)P與點(diǎn)B重合).

(初步探究)

1)寫出點(diǎn)B的坐標(biāo)________;

2)點(diǎn)Cx軸上移動過程中,作軸,垂足為點(diǎn)D,都有,請在圖2中畫出當(dāng)?shù)妊苯?/span>的頂點(diǎn)P在第四象限時的圖形,并求證:.

(深入探究)

3)當(dāng)點(diǎn)Cx軸上移動時,點(diǎn)P也隨之運(yùn)動.探究點(diǎn)P在怎樣的圖形上運(yùn)動,請直接寫出結(jié)論,并求出這個圖形所對應(yīng)的函數(shù)表達(dá)式;

4)直接寫出的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某生姜種植基地計劃種植A,B兩種生姜30.已知A,B兩種生姜的年產(chǎn)量分別為2000千克/畝、2500千克/,收購單價分別是8/千克、7/千克.

(1)若該基地收獲兩種生姜的年總產(chǎn)量為68000千克,A,B兩種生姜各種多少畝?

(2)若要求種植A種生姜的畝數(shù)不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)

圖像交于點(diǎn)A

(1)求點(diǎn)A的坐標(biāo);

(2)在y軸上確定點(diǎn)M,使得△AOM是等腰三角形,請直接寫出點(diǎn)M的坐標(biāo);

(3)如圖,設(shè)x軸上一點(diǎn)Pa0),過點(diǎn)Px軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△ABC的面積及點(diǎn)B、點(diǎn)C的坐標(biāo);

(4)在(3)的條件下,設(shè)直線x軸于點(diǎn)D,在直線BC上確定點(diǎn)E,使得△ADE的周長最小,請直接寫出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),st之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當(dāng)t=3時,兩車相距40千米,其中不正確的個數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.

(1)求證:△ABG≌△C′DG;

(2)求tan∠ABG的值;

(3)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場要建一個長方形ABCD的養(yǎng)雞場,雞場的一邊靠墻,(墻長25m)另外三邊用木欄圍成,木欄長40m.

(1)若養(yǎng)雞場面積為168m2,求雞場垂直于墻的一邊AB的長.

(2)請問應(yīng)怎樣圍才能使養(yǎng)雞場面積最大?最大的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,∠ACB=90°AC=BC,PCQ=45°,把∠PCQ繞點(diǎn)C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,過點(diǎn)AADCP,垂足為D,直線ADCQE

1)如圖①,當(dāng)∠PCQ在∠ACB內(nèi)部時,求證:AD+BE=DE;

2)如圖②,當(dāng)CQ在∠ACB外部時,則線段AD、BEDE的關(guān)系為_____;

3)在(1)的條件下,若CD=6SBCE=2SACD,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),st之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當(dāng)t=3時,兩車相距40千米,其中不正確的個數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案