【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積(請(qǐng)?jiān)趫D1中探索);
(3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請(qǐng)直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D2中探索).

【答案】
(1)

解:∵二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),

解得: ,

∴y= x2 x﹣4


(2)

解:過點(diǎn)D作DM⊥y軸于點(diǎn)M,

∵y= x2 x﹣4= (x﹣1)2

∴點(diǎn)D(1,﹣ )、點(diǎn)C(0,﹣4),

則SACD=S梯形AOMD﹣SCDM﹣SAOC

= ×(1+3)× ×( ﹣4)×1﹣ ×3×4

=4


(3)

解:四邊形APEQ為菱形,E點(diǎn)坐標(biāo)為(﹣ ,﹣ ).理由如下

如圖2,E點(diǎn)關(guān)于PQ與A點(diǎn)對(duì)稱,過點(diǎn)Q作,QF⊥AP于F,

∵AP=AQ=t,AP=EP,AQ=EQ

∴AP=AQ=QE=EP,

∴四邊形AQEP為菱形,

∵FQ∥OC,

= = ,

= =

∴AF= t,F(xiàn)Q= t

∴Q(3﹣ t,﹣ t),

∵EQ=AP=t,

∴E(3﹣ t﹣t,﹣ t),

∵E在二次函數(shù)y= x2 x﹣4上,

∴﹣ t= (3﹣ t)2 (3﹣ t)﹣4,

∴t= ,或t=0(與A重合,舍去),

∴E(﹣ ,﹣ ).


【解析】(1)將A,B點(diǎn)坐標(biāo)代入函數(shù)y= x2+bx+c中,求得b、c,進(jìn)而可求解析式;(2)由解析式先求得點(diǎn)D、C坐標(biāo),再根據(jù)SACD=S梯形AOMD﹣SCDM﹣SAOC , 列式計(jì)算即可;(3)注意到P,Q運(yùn)動(dòng)速度相同,則△APQ運(yùn)動(dòng)時(shí)都為等腰三角形,又由A、E對(duì)稱,則AP=EP,AQ=EQ,易得四邊形四邊都相等,即菱形.利用菱形對(duì)邊平行且相等的性質(zhì)可用t表示E點(diǎn)坐標(biāo),又E在二次函數(shù)的圖象上,所以代入即可求t,進(jìn)而E可表示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),AOB=110°BOC=α, OC為邊作等邊三角形OCD,連接AD.

1當(dāng)α=150°時(shí),試判斷AOD的形狀,并說明理由;

2探究:當(dāng)a為多少度時(shí),AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,E為弦AC的延長(zhǎng)線上一點(diǎn),DE與⊙O相切于點(diǎn)D,且DE⊥AC,連結(jié)OD,若AB=10,AC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用“<”“>”或“=”號(hào)填空:

(1)﹣_____

(2)﹣(﹣0.01)_____ (﹣2;

(3)3.9950(精確到0.01)_____3.999.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…

(1)請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=(   2

(2)用含n的等式表示上面的規(guī)律:   ;

(3)用找到的規(guī)律解決下面的問題:

計(jì)算:(1+)(1+)(1+)(1+)…(1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家推行“節(jié)能減排低碳經(jīng)濟(jì)”政策后,某企業(yè)推出一種“CNG”改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b,據(jù)市場(chǎng)調(diào)查知每輛車改裝前、后的燃料費(fèi)含改裝費(fèi)y0,y1與正常運(yùn)營(yíng)時(shí)間x之間分別滿足關(guān)系式y0=ax,y1=b+50x,圖象如圖所示

1每輛車改裝前每天的燃料費(fèi)a= ,每輛車的改裝費(fèi)b= 正常運(yùn)營(yíng)時(shí)間 天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本

2某出租汽車公司一次性改裝了100輛出租車,因而正常運(yùn)行多少天后共節(jié)省燃料費(fèi)40萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫度的度量有兩種基本單位:攝氏溫度(),華氏溫度().在溫度計(jì)上,攝氏溫度x與華氏溫度y有如下表所示的對(duì)應(yīng)關(guān)系:

x/

-10

0

10

20

y/

14

32

50

68

按下列步驟確定yx之間的函數(shù)關(guān)系式.

(1)在平面直角坐標(biāo)系中描點(diǎn)、連線,畫出圖象;

(2)猜想能表示yx之間關(guān)系的函數(shù)類型;

(3)確定yx之間的函數(shù)關(guān)系式,并驗(yàn)證你的想法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證: ;

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(2,0),B(1,m2﹣4m+5).

(1)直接判斷△ABO是什么圖形;
(2)如果SABO有最小值,求m的值;
(3)拋物線y=﹣(x﹣2)(x﹣n)經(jīng)過點(diǎn)B且與y軸交于點(diǎn)C,與x軸交于兩點(diǎn)A,D.
①用含m的式子表示點(diǎn)C和點(diǎn)D坐標(biāo);
②點(diǎn)P是拋物線上x軸上方任一點(diǎn),PQ∥BD交x軸于點(diǎn)Q,將△ABO向左平移到△A′B′O′,點(diǎn)A,B,O的對(duì)應(yīng)點(diǎn)分別是A′,B′,O′,當(dāng)點(diǎn)A'與點(diǎn)D重合時(shí),點(diǎn)B'在線段PQ上,如果點(diǎn)P恰好是拋物線頂點(diǎn),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案