已知二次函數(shù)y=kx2+k(k≠0)與反比例函數(shù)y=-數(shù)學(xué)公式,它們?cè)谕恢苯亲鴺?biāo)系中的圖象大致是


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:根據(jù)k>0,k<0,結(jié)合兩個(gè)函數(shù)的圖象及其性質(zhì)分類(lèi)討論.
解答:分兩種情況討論:
①當(dāng)k>0時(shí),反比例函數(shù)y=-,在二、四象限,而二次函數(shù)y=kx2+k開(kāi)口向上,與y軸交點(diǎn)在原點(diǎn)上方,A符合;
②當(dāng)k<0時(shí),反比例函數(shù)y=-,在一、三象限,而二次函數(shù)y=kx2+k開(kāi)口向下,與y軸交點(diǎn)在原點(diǎn)下方,都不符.
分析可得:它們?cè)谕恢苯亲鴺?biāo)系中的圖象大致是A.
故選A.
點(diǎn)評(píng):本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(diǎn)(A點(diǎn)在原點(diǎn)左側(cè),B點(diǎn)在原點(diǎn)右側(cè)),與y軸交于C點(diǎn).若AB=4,OB>OA,且OA、OB是方程x2+kx+3=0的兩根.
(1)請(qǐng)求出A,B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)O到BC的距離為
3
2
2
,求此二次函數(shù)的解析式;
(3)若點(diǎn)P的橫坐標(biāo)為2,且△PAB的外心為M(1,1),試判斷點(diǎn)P是否在(2)中所求的二次函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2-2ax+3(a<0)的圖象與x軸的負(fù)半軸交于點(diǎn)A,與y軸的正半軸交于精英家教網(wǎng)點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A、點(diǎn)B.
(1)求一次函數(shù)的解析式;
(2)求頂點(diǎn)P的坐標(biāo);
(3)平移直線AB使其過(guò)點(diǎn)P,如果點(diǎn)M在平移后的直線上,且tan∠OAM=
32
,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,其頂點(diǎn)的橫坐標(biāo)為1,且過(guò)點(diǎn)(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達(dá)式;
(2)若直線l:y=kx(k≠0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得△BOD∽△BAC?若存在,求出該直線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+3圖象的對(duì)稱(chēng)軸為直線x=1.
(1)用含a的代數(shù)式表示b;
(2)若一次函數(shù)y=kx+5的圖象經(jīng)過(guò)點(diǎn)A(4,1)及這個(gè)二次函數(shù)圖象的頂點(diǎn),求二次函數(shù)y=ax2+bx+3的解析式;
(3)在(2)的條件下,若點(diǎn)P(T,2T)在二次函數(shù)y=ax2+bx+3圖象上,則點(diǎn)P叫作圖象上的2倍點(diǎn),求出這個(gè)二次函數(shù)圖象上的所有2倍點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)三點(diǎn)A(-1,0),B(3,0),C(0,3),它的頂點(diǎn)為M,又正比例函數(shù)y=kx的圖象與二次函數(shù)相交于兩點(diǎn)D、E,且P是線段DE的中點(diǎn).
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點(diǎn)M的坐標(biāo);
(2)已知點(diǎn)E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)值時(shí),試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)當(dāng)k為何值時(shí)且0<k<2,求四邊形PCMB的面積為
93
16

(參考公式:已知兩點(diǎn)D(x1,y1),E(x2,y2),則線段DE的中點(diǎn)坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

同步練習(xí)冊(cè)答案