【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.

(1)求證:四邊形AECF是矩形;

(2)若AB=6,求菱形的面積.

【答案】(1)證明見解析;(2)24

【解析】試題(1)首先證明△ABC是等邊三角形,進(jìn)而得出∠AEC=90°,四邊形AECF是平行四邊形,即可得出答案;

2)利用勾股定理得出AE的長,進(jìn)而求出菱形的面積.

試題解析:(1四邊形ABCD是菱形,

∴AB=BC,

∵AB=AC,

∴△ABC是等邊三角形,

∵EBC的中點(diǎn),

∴AE⊥BC,

∴∠AEC=90°

∵E、F分別是BC、AD的中點(diǎn),

∴AF=AD,EC=BC

四邊形ABCD是菱形,

∴AD∥BCAD=BC

∴AF∥ECAF=EC,

四邊形AECF是平行四邊形,

∵∠AEC=90°,

四邊形AECF是矩形;

2)在Rt△ABE中,AE=

所以,S菱形ABCD=6×3=18

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動,將三角板MON 繞點(diǎn)O 以每秒8°的速度順時針方向旋轉(zhuǎn)t 秒.

(1)如圖2,當(dāng)t=   秒時,OM 平分∠AOC,此時∠NOC﹣∠AOM= ;

(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關(guān)系?并說明理由(數(shù)量關(guān)系中不能含t);

(3)直線AD 的位置不變,若在三角板MON 開始順時針旋轉(zhuǎn)的同時,另一個三角板OBC也繞點(diǎn)O 以每秒2°的速度順時針旋轉(zhuǎn),當(dāng)OM 旋轉(zhuǎn)至射線OD 上時,兩個三角板同時停止運(yùn)動.

①當(dāng)t= 秒時,∠MOC=15°;

②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關(guān)系(數(shù)量關(guān)系中不能含t).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF分別在正方形ABCDBCCD上,∠EAF=45°.

(1)以A為旋轉(zhuǎn)中心,將ABE按順時針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的圖形.

(2)已知BE=2cm,DF=3cm,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)“低碳生活”的號召,李明決定每天騎自行車上學(xué),有一天李明騎了1000米后,自行車發(fā)生了故障,修車耽誤了5分鐘,車修好后李明繼續(xù)騎行,用了8分鐘騎行了剩余的800米,到達(dá)學(xué)校(假設(shè)在騎車過程中勻速行駛).若設(shè)他從家開始去學(xué)校的時間為t(分鐘),離家的路程為y(千米),則y與t(15<t≤23)的函數(shù)關(guān)系為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天數(shù)學(xué)課上,老師講了整式的加減.放學(xué)后,小明回到家拿出課堂筆記,認(rèn)真地復(fù)習(xí)老師課堂上講的內(nèi)容,他突然發(fā)現(xiàn)一道題:

(﹣x2+3yx﹣y2)﹣(﹣x2+■xy﹣y2)=﹣x2﹣xy+■y2,其中兩處橫線地方的數(shù)字被鋼筆水弄污了,那么這兩處地方的數(shù)字之積應(yīng)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品廠質(zhì)檢部門對一批水果罐頭的質(zhì)量進(jìn)行檢查,從中隨意抽查了10個,凈含量如下(單位:g):339,343,341,347,345,341,340,344,329,341.

(1)這個問題中,總體、個體、樣本各是什么?

(2)試估計出這批水果罐頭的平均質(zhì)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將5張都是10元的紙幣隨機(jī)裝入10個完全相同的信封中,設(shè)計以下幾種抽獎游戲:

(1)游戲A:設(shè)計一個游戲,使任意抽取一個信封時,能抽到紙幣的概率為

(2)游戲B:設(shè)計一個游戲,使任意抽取一個信封時,能抽到紙幣的概率為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BCD,E兩點(diǎn),垂足分別是M,N.

(1)若△ADE的周長是10,求BC的長;

(2)若∠BAC=100°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC=5,BC=6,ADBC邊上的中線且AD=4,AD上的動點(diǎn),AC邊上的動點(diǎn),則的最小值是( ).

A. 6 B. 4 C. D. 不存在最小值

查看答案和解析>>

同步練習(xí)冊答案