(2006•汾陽市)下表是我國近幾年的進口額與出口額數(shù)據(jù)(近似值)統(tǒng)計表.
年份198519901995199820002002
出口額(億美元)2746211500180025003300
進口額(億美元)4235341300140023003000
(1)下圖是描述這兩組數(shù)據(jù)的折線圖,請你將進口額折線圖補充完整;
(2)計算2000年至2002年出口額年平均增長率(≈1.15);
(3)觀察折線圖,你還能得到什么信息,寫出兩條.
【答案】分析:第二問考查數(shù)量平均變化率問題,解題的關(guān)鍵是正確列出一元二次方程.原來的數(shù)量為a,平均每次增長或降低的百分率為x的話,經(jīng)過第一次調(diào)整,就調(diào)整到a×(1±x),再經(jīng)過第二次調(diào)整就是a×(1±x)(1±x)=a(1±x)2.增長用“+”,下降用“-”.第三問主要觀察折線圖每段折線的起點和它們的斜率即可得出結(jié)論.
解答:解:(1)如圖
(2分)

(2)設(shè)2000年至2002年出口額年平均增長率為x.(3分)
據(jù)題意可得2500(1+x)2=3300.(5分)
化簡得(1+x)2=1.32.
解得x1≈0.15,x2≈-2.15(舍).(7分)
所以,2000年至2002年出口額年平均增長率為15%.(8分)

(3)答案舉例:①出口額不斷增長;②進口額不斷增長;③從1990年開始,出口額大于進口額;④1998年至2000年進口額增長幅度大于出口額增長幅度.
評分說明:只要正確均可給滿分,累計(10分).
點評:本題要求學(xué)生會畫折線統(tǒng)計圖,會分析折線統(tǒng)計圖,會應(yīng)用一元二次方程求平均變化率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山西省中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山西省呂梁中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:填空題

(2006•汾陽市)甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關(guān)鍵的球,出手點為P,羽毛球飛行的水平距離s(米)與其距地面高度h(米)之間的關(guān)系式為h=-s2+s+.如圖,已知球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為米,設(shè)乙的起跳點C的橫坐標為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導(dǎo)致接球失敗,則m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(02)(解析版) 題型:選擇題

(2006•汾陽市)如圖,是某函數(shù)的圖象,則下列結(jié)論中正確的是( )

A.當(dāng)y=1時,x的取值是
B.當(dāng)y=-3時,x的近似值是0,2
C.當(dāng)時,函數(shù)值y最大
D.當(dāng)x>-3時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案