【題目】為了掌握八年級(jí)數(shù)學(xué)考試卷的命題質(zhì)量與難度系數(shù),命題組教師赴外地選取一個(gè)水平相當(dāng)?shù)陌四昙?jí)班級(jí)進(jìn)行預(yù)測(cè),將考試成績分布情況進(jìn)行處理分析,制成如圖表(成績得分均為整數(shù)):
根據(jù)圖表中提供的信息解答下列問題:
組別 | 成績分組 | 頻數(shù) |
A | 47.5~59.5 | 2 |
B | 59.5~71.5 | 4 |
C | 71.5~83.5 | a |
D | 83.5~95.5 | 10 |
E | 95.5~107.5 | b |
F | 107.5~120 | 6 |
(1)頻數(shù)分布表中的a= ,b= ;扇形統(tǒng)計(jì)圖中的m= ,n= ;
(2)已知全區(qū)八年級(jí)共有200個(gè)班(平均每班40人),用這份試卷檢測(cè),108分及以上為優(yōu)秀,預(yù)計(jì)優(yōu)秀的人數(shù)約為 人,72分及以上為及格,預(yù)計(jì)及格的人數(shù)約為 人;
(3)補(bǔ)充完整頻數(shù)分布直方圖.
【答案】(1)8、10、10、25;(2)1200人、6800人;(3)補(bǔ)圖見詳解.
【解析】
(1)根據(jù)第一組的頻數(shù)和頻率結(jié)合頻率=,可求出總數(shù),繼而可分別得出a、b、m、n的值;
(2)先計(jì)算全區(qū)總?cè)藬?shù),再用總?cè)藬?shù)乘以優(yōu)秀,及格所占百分比,即可解決問題;
(3)根據(jù)(1)中a、b的值即可補(bǔ)全圖形.
(1)∵被調(diào)查的總?cè)藬?shù)為2÷5%=40人,
∴a=40×20%=8,
b=40﹣(2+4+8+10+6)=10,
B組所占百分比為4÷40=10%,∴m=10,
E組占百分比為10÷40=25%,∴n=25,
故答案為a=8,b=10,m=10,n=25;
(2)∵全區(qū)八年級(jí)學(xué)生總?cè)藬?shù)為200×40=8000人,
∴預(yù)計(jì)優(yōu)秀的人數(shù)約為8000×15%=1200人,預(yù)計(jì)及格的人數(shù)約為8000×(20%+25%+25%+15%)=6800人,
故答案為1200人、6800人;
(3)補(bǔ)全頻數(shù)分布直方圖如下:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增加學(xué)校綠化,學(xué)校計(jì)劃建造一塊長為的正方形花壇,分別取四邊中點(diǎn),構(gòu)成四邊形,并計(jì)劃用“兩花一草”來裝飾,四邊形部分使用甲種花,在正方形四個(gè)角落構(gòu)造4個(gè)全等的矩形區(qū)域種植乙種花,剩余部分種草坪,圖紙?jiān)O(shè)計(jì)如下.
(1)經(jīng)了解,種植甲種花50元/,乙種花80元/,草坪10元/,設(shè)一個(gè)矩形的面積為,裝飾總費(fèi)用為元,求關(guān)于的函數(shù)關(guān)系式.
(2)當(dāng)裝飾費(fèi)用為74880元時(shí),則一個(gè)矩形區(qū)域的長和寬分別為多少?
(3)為了縮減開支,甲區(qū)域用單價(jià)為40元/的花,乙區(qū)域用單價(jià)為元/ (,且為10的倍數(shù))的花,草坪單價(jià)不變,最后裝飾費(fèi)只用了55000元,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,點(diǎn)C是弧AB的中點(diǎn),D是弦AB上一動(dòng)點(diǎn),且不與A、B重合,CD的延長線交于⊙O點(diǎn)E,連接AE、BE,過點(diǎn)A作AF⊥BC,垂足為F,∠ABC=30°.
(1)求證:AF是⊙O的切線;
(2)若BC=6,CD=3,則DE的長為 ;
(3)當(dāng)點(diǎn)D在弦AB上運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?如果變化,請(qǐng)寫出其變化范圍;如果不變,請(qǐng)求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形在上取兩點(diǎn)(在左邊),以為邊作等邊三角形,使頂點(diǎn)在上,分別交于點(diǎn).
(1)求的邊長;
(2)在不添加輔助線的情況下,當(dāng)與不重合時(shí),從圖中找出一對(duì)相似三角形,并說明理由;
(3)若的邊在線段上移動(dòng).試猜想:與有何數(shù)量關(guān)系?并證明你猜想的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,﹣1),點(diǎn)B(9,﹣10),AC∥x軸,點(diǎn)P是直線AC上方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線AB,AC分別交于點(diǎn)E,F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C,P,Q為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某初中課外興趣活動(dòng)小組對(duì)某水稻品種的稻穗谷粒數(shù)目進(jìn)行調(diào)查,從試驗(yàn)田中隨機(jī)抽取了30株,得到的數(shù)據(jù)如下(單位:顆):
182 | 195 | 201 | 179 | 208 | 204 | 186 | 192 | 210 | 204 |
175 | 193 | 200 | 203 | 188 | 197 | 212 | 207 | 185 | 206 |
188 | 186 | 198 | 202 | 221 | 199 | 219 | 208 | 187 | 224 |
(1)對(duì)抽取的30株水稻稻穗谷粒數(shù)進(jìn)行統(tǒng)計(jì)分析,請(qǐng)補(bǔ)全下表中空格,并完善直方圖:
谷粒顆數(shù) | 175≤x<185 | 185≤x<195 | 195≤x<205 | 205≤x<215 | 215≤x<225 |
頻數(shù) | 8 | 10 | 3 | ||
對(duì)應(yīng)扇形 圖中區(qū)域 | D | E | C |
(2)如圖所示的扇形統(tǒng)計(jì)圖中,扇形A對(duì)應(yīng)的圓心角為 度,扇形B對(duì)應(yīng)的圓心角為 度;
(3)該試驗(yàn)田中大約有3000株水稻,據(jù)此估計(jì),其中稻穗谷粒數(shù)大于或等于205顆的水稻有多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的與的部分對(duì)應(yīng)值如表:
下列結(jié)論:拋物線的開口向上;②拋物線的對(duì)稱軸為直線;③當(dāng)時(shí),;④拋物線與軸的兩個(gè)交點(diǎn)間的距離是;⑤若是拋物線上兩點(diǎn),則,其中正確的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,3),B(3,1),C(5,4).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)以點(diǎn)P(1,﹣1)為位似中心,在如圖所示的網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1;
(3)畫出△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°的△A′B′C′,并寫出線段BC掃過的面積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com