(2005•紹興)如圖所示,兩圓輪疊靠在墻邊,已知兩輪半徑分別為4和1,則它們與墻的切點(diǎn)A,B間的距離為   
【答案】分析:此題要求AB之間的距離,只要將圖形轉(zhuǎn)化成直角三角形,利用勾股定理來(lái)求解即可.
解答:解:設(shè)兩圓圓心為O1,O2,連接O1,O2,作平行于AB且過(guò)點(diǎn)O1的直線,
根據(jù)勾股定理可得,|AB|2=O1O22-(R-r)2=25-9=16,
∴|AB|=4,
因此,A、B間的距離為4.
點(diǎn)評(píng):此題考查的是根據(jù)題意構(gòu)造直角三角形,再利用直角三角形的性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•紹興)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,0),B(2,0).
(1)畫出等腰三角形ABC(畫一個(gè)即可);
(2)寫出(1)中畫出的三角形ABC的頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例2.4.二次根式(解析版) 題型:選擇題

(2005•紹興)如圖所示,“數(shù)軸上的點(diǎn)并不都表示有理數(shù),如圖中數(shù)軸上的點(diǎn)P所表示的數(shù)是”,這種說(shuō)明問(wèn)題的方式體現(xiàn)的數(shù)學(xué)思想方法叫做( )

A.代入法
B.換元法
C.?dāng)?shù)形結(jié)合
D.分類討論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•紹興)如圖矩形ABCD中,過(guò)A,B兩點(diǎn)的⊙O切CD于E,交BC于F,AH⊥BE于H,連接EF.
(1)求證:∠CEF=∠BAH;
(2)若BC=2CE=6,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•紹興)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,0),B(2,0).
(1)畫出等腰三角形ABC(畫一個(gè)即可);
(2)寫出(1)中畫出的三角形ABC的頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2005•紹興)如圖,已知AB是⊙O的直徑,CD是弦且CD⊥AB,BC=6,AC=8,則sin∠ABD的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案