【題目】解下列方程:
(1)x2+x=0;
(2)x2﹣4x﹣1=0.
【答案】
(1)
解:分解因式得:x(x+1)=0,
x=0,x+1=0,
解得:x1=0,x2=﹣1
(2)
解:x2﹣4x﹣1=0
x2﹣4x=1
x2﹣4x+22=1+22
(x﹣2)2=5
∴x﹣2=± ,
∴x1=2+ ,x2=2﹣
【解析】(1)分解因式得出x(x+1)=0,推出x=0,x+1=0,求出方程的解即可.(2)根據(jù)配方法進行解答即可.
【考點精析】關(guān)于本題考查的配方法和因式分解法,需要了解左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形紙片ABC中,∠ACB=90°,AC≤BC,如圖,將紙片沿某條直線折疊,使點A落在直角邊BC上,記落點為D,設(shè)折痕與AB、AC邊分別交于點E、F.
(1)如果∠AFE=65°,求∠CDF的度數(shù);
(2)若折疊后的△CDF與△BDE均為等腰三角形,那么紙片中∠B的度數(shù)是多少?寫出你的計算過程,并畫出符合條件的折疊后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,OP=6cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是6cm,則∠AOB的度數(shù)是( 。
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AD⊥BC,AE平分∠BAC交BC于點E.
(1)若∠B=20°,∠C=80°,求∠EAC和∠EAD的大。
(2)若∠C>∠B,由(1)的計算結(jié)果,你能發(fā)現(xiàn)∠EAD與∠C﹣∠B的數(shù)量關(guān)系嗎?寫出這個關(guān)系式,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標系后的頂點均在格點上。
(1)寫出點的坐標
(2)畫出向上平移3個單位,向左平移5個單位得到的的圖像 ,并寫出頂點坐標;
(3)求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E、F分別為線段AC上的兩個點,且DE⊥AC于點E,BF⊥AC于點F,若AB=CD,AE=CF,BD交AC于點M.
(1)試猜想DE與BF的關(guān)系,并證明你的結(jié)論;
(2)求證:MB=MD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,DH⊥BC于H,交BE于G.下列結(jié)論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的是
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com