【題目】如圖,將一副三角板中含有30°角的三角板的直角頂點(diǎn)落在等腰直角三角形的斜邊的中點(diǎn)D處,并繞點(diǎn)D旋轉(zhuǎn),兩直角三角板的兩直角邊分別交于點(diǎn)E,F(xiàn),下列結(jié)論:①DE=DF;②S四邊形AEDF=SBED+SCFD;③SABC=EF2;④EF2=BE2+CF2,其中正確的序號(hào)是_____

【答案】①②④.

【解析】

連接AD,如圖,由已知條件利用ASA推導(dǎo)證明DBE≌△DAF,根據(jù)全等三角形的性質(zhì)可得DE=DF,由此可判斷①;同①一樣的道理可證明DCF≌△DAE,由此可判斷②;由SABC=ADBC=AD2AD=AD2,確定出只有當(dāng)DEAB時(shí),四邊形AEDF為矩形,此時(shí)AD=EF,由此可以判斷③;在RtAEF中,EF2=AE2+AF2,再根據(jù)DBE≌△DAF,DCF≌△DAE,即可得到EF2=BE2+CF2,由此可判斷④.

連接AD,如圖,

∵△ABC為等腰直角三角形,

AB=AC,B=C=45°,

∵點(diǎn)D為等腰直角ABC的斜邊的中點(diǎn),

ADBC,BD=CD=AD,AD平分∠BAC,

∴∠2+3=90°,1=45°,

∵∠EDF=90°,即∠4+3=90°,

∴∠2=4,

DBEDAF

,

∴△DBE≌△DAF(ASA),

DE=DF,所以①正確;

同理可得DCF≌△DAE,

S四邊形AEDF=SBED+SCFD,所以②正確;

SABC=ADBC=AD2AD=AD2,

而只有當(dāng)DEAB時(shí),四邊形AEDF為矩形,此時(shí)AD=EF,

SABC不一定等于EF2,所以③錯(cuò)誤;

RtAEF中,EF2=AE2+AF2

∵△DBE≌△DAF,DCF≌△DAE,

BE=AF,CF=AE,

EF2=BE2+CF2,所以④正確,

故答案為①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,平分,且,與相交于點(diǎn),,交,下列結(jié)論:①;②;③;④.其中正確的是(

A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】葛藤是一種刁鉆的植物,它的腰桿不硬,為了爭(zhēng)奪雨露陽(yáng)光,常常繞著樹(shù)干盤(pán)旋而上,它還有一手絕招,就是它繞樹(shù)盤(pán)升的路線總是沿最短路線——螺旋前進(jìn)的.

通過(guò)閱讀以上信息,解決下列問(wèn)題:

(1)若樹(shù)干的周長(zhǎng)(即圖中圓柱的底面周長(zhǎng))30cm,葛藤繞一圈升高(即圓柱的高)40cm,則它爬行一圈的路程是多少?

(2)若樹(shù)干的周長(zhǎng)為80cm,葛藤繞一圈爬行100cm,它爬行10圈到達(dá)樹(shù)頂,則樹(shù)干高多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,A-3,1),B3,2),解答以下問(wèn)題:

1)在圖中標(biāo)出平面直角坐標(biāo)系的原點(diǎn)O,并建立直角坐標(biāo)系;

2)點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A’坐標(biāo)為 ,并在坐標(biāo)系中畫(huà)出點(diǎn)A’;

3)點(diǎn)Px軸上一點(diǎn),當(dāng)PA+PB最小時(shí),在圖中畫(huà)出點(diǎn)P的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富學(xué)生的學(xué)習(xí)生活,某班組織學(xué)生參觀某愛(ài)國(guó)主義教育基地,所聯(lián)系的旅行社收費(fèi)標(biāo)準(zhǔn)如下:

活動(dòng)結(jié)束后,該班共支付給該旅行社活動(dòng)費(fèi)用5600元,該班共有多少人參加這次活動(dòng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,

(1)求DE的長(zhǎng);

(2)過(guò)點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長(zhǎng);

(3)過(guò)點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)美麗撫順的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長(zhǎng)的道路少用3天.

(1)甲、乙兩工程隊(duì)每天能改造道路的長(zhǎng)度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬(wàn)元,乙隊(duì)工作一天需付費(fèi)用5萬(wàn)元,如需改造的道路全長(zhǎng)1200米,改造總費(fèi)用不超過(guò)145萬(wàn)元,至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,等腰RtABC,在直角邊AB的左側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱(chēng)點(diǎn)為E,連結(jié)BECE,其中CE交直線AP于點(diǎn)F.

(1)當(dāng)∠PAB=29°時(shí),求∠ACE的度數(shù).

(2)當(dāng)0°<PAB<45°時(shí),利用(1),求∠BEC度數(shù).

(3)45°<PAB<90°,用等式表示線段AB,FEFC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在10×10的網(wǎng)格中,已知A0,4),B(﹣2,2),C3,0).

1)在如圖網(wǎng)格中畫(huà)出ABC,及ABC關(guān)于x軸對(duì)稱(chēng)的A1B1C1;

2)寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo).

3)求出ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案