【題目】已知,正方形ABPD的邊長為3,將邊DP繞點P順時針旋轉90°至PC,E、F分別為線段DP、CP上兩個動點(不與D、P、C重合),且DE=CF,連接BE并延長分別交DF、DC于H、G.
(1)①求證:△BPE≌△DPF,②判斷BG與DF位置關系并說明理由;
(2)當PE的長度為多少時,四邊形DEFG為菱形并說明理由;
(3)連接AH,在點E、F運動的過程中,∠AHB的大小是否發(fā)生改變?若改變,請說出是如何變化的;若不改變,請求出∠AHB的度數.
【答案】(1)①見解析,②BG⊥DF;(2)當PE=3﹣3時,四邊形DEFG為菱形;
(3)45°.
【解析】分析:
(1)①由已知條件易得BP=DP=PC,∠BPE=∠DPF=90°結合DE=CF可得PE=PF,由此即可得到△BPE≌△DPF;②由△BPE≌△DPF可得∠EBP=∠FDP,結合∠FDP+∠BFH=90°,可得∠EBP+∠BFH=90°,從而可得∠BHP=90°,由此可得BG⊥DF;
(2)如下圖1,連接EF、GF,由題意可知,要使四邊形DEFG是菱形,則必須使DE=EF,由(1)中所得△BPE≌△DPF可得PF=PE,設PE=x,則DE=3-x=EF,由此在Rt△PEF中由勾股定理建立方程,解方程即可求得此時PE=x=,解題時把PE=作為一個條件,結合題目中的其它條件去證明此時四邊形DEFG為菱形即可;
(3)如圖2,連接BD,作出BD的中點O,連接AO,HO,由已知條件結合(1)中所得BG⊥DF易得OA=OB=OD=OH=BD,由此可得點A、B、H、D在以O為圓心、OA為半徑的圓上,從而可得∠AHB=∠ADB=45°.
詳解:
(1)①證明:由旋轉的性質可知,△DPC是等腰直角三角形,
∵四邊形ABPD是正方形,
∴BP=PD=PC,∠BPE=∠DPF=90°,
∵DE=CF,
∴PE=PF,
在△BPE和△DPF中,
BP=PD,∠BPE=∠DPF,PE=PF,
∴△BPE≌△DPF;
②∵△BPE≌△DPF,
∴∠EBP=∠FDP,又∠FDP+∠BFH=90°,
∴∠EBP+∠BFH=90°,
∴∠BHP=90°,
∴BG⊥DF;
(2)當PE=時,四邊形DEFG為菱形;理由如下:
在正方形ABPD中,BP=PD=3,
∵PE=,EF=PE,
∴EF==6﹣3,DE=PD-PE=6﹣3,
∴EF=ED,
∵BG⊥DF,
∴EG垂直平分DF,
∴GD=GF,
∵∠PEF=∠PDC=45°,
∴EF∥DG,
∴∠EFD=∠FDG,
∵DE=EF,
∴∠EFD=∠EDF,
∴∠EDG=∠FDE,
∵BG⊥DF,
∴∠DEG=∠DGE,
∴DE=DG,
∴DE=DG=GF=EF,
∴四邊形DEFG是菱形;
(3)∠AHB的大小不變,∠AHB=45°,
連接BD,取BD的中點O,連接OA、OH,
∵四邊形ABCD是正方形,
∴∠BAD=90°,∠ADB=45°,
∵BG⊥DF,
∴∠DHB=90°,
則OA=OB=OD=OH=BD,
∴點A、B、H、D在以O為圓心、OA為半徑的圓上,
∴∠AHB=∠ADB=45°.
科目:初中數學 來源: 題型:
【題目】如圖,,均為等邊三角形,點,,在同一條直線上,連接,,與相交于點,與相交于點,連接,下列結論正確的有_________.
①;②;③;④;⑤平分
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AD既是△ABC的中線,又是角平分線,請判斷:
(1)△ABC的形狀;
(2)AD是否過△ABC外接圓的圓心O,⊙O是否是△ABC的外接圓,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校要開展校園文化藝術節(jié)活動,為了合理編排節(jié)目,對學生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調查(每名學生必須選擇且只能選擇一類),并將調查結果繪制成如下不完整統(tǒng)計圖.
請你根據圖中信息,回答下列問題:
(1)本次共調查了 名學生.
(2)在扇形統(tǒng)計圖中,“歌曲”所在扇形的圓心角等于 度.
(3)補全條形統(tǒng)計圖(標注頻數).
(4)根據以上統(tǒng)計分析,估計該校2000名學生中最喜愛小品的人數為 人.
(5)九年一班和九年二班各有2名學生擅長舞蹈,學校準備從這4名學生中隨機抽取2名學生參加舞蹈節(jié)目的編排,那么抽取的2名學生恰好來自同一個班級的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形、、…按如圖放置,其中點、、…在軸正半軸上,點、、…在直線上,依此類推…,則點的坐標是________;點的坐標是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D是Rt△ABC斜邊AB的中點,過點B、C分別作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=,求CD的長;
(2)求證:BC⊥DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解八年級學生的視力情況,對八年級學生進行了一次視力調查,并將調查結果進行統(tǒng)計整理,繪制了頻數分布表和頻數分布直方圖的一部分.
(1)在頻數分布表中,a= ,b= ;
(2)將頻數分布直方圖補充完整;
(3)若將視力在4.6及以上的視力情況定義為“視力正!保蟆耙暳φ!钡娜藬嫡急徽{查人數的百分比.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com