【題目】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),則∠BOC的度數(shù)是______.
【答案】10°或14°或30°或42°
【解析】
①當(dāng)射線(xiàn)OC在∠AOB內(nèi)部時(shí),此時(shí)射線(xiàn)OD的位置只有兩種可能:i)若射線(xiàn)OD在∠AOC內(nèi)部,ii)若射線(xiàn)OD在∠AOB外部,
②當(dāng)射線(xiàn)OD在∠AOB外部時(shí),i)若射線(xiàn)DO在∠AOB內(nèi)部,ii)若射線(xiàn)OD在∠AOB外部分別求出即可.
解:設(shè)∠BOC=α,
∴∠BOD=3∠BOC=3α,
依據(jù)題意,分兩種情況:
①當(dāng)射線(xiàn)OC在∠AOB內(nèi)部時(shí),此時(shí)射線(xiàn)OD的位置只有兩種可能:
i)若射線(xiàn)OD在∠AOC內(nèi)部,如圖2,
∴∠COD=∠BOD-∠BOC=2α,
∵∠AOD=∠AOC,
∴∠AOD=∠COD=2α,
∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,
∴α=14°,
∴∠BOC=14°;
ii)若射線(xiàn)OD在∠AOB外部,如圖3,
∴∠COD=∠BOD-∠BOC=2α,
∵∠AOD=∠AOC,
∴∠AOD=∠COD=α,
∴∠AOB=∠BOD-∠AOD=3α-α=α=70°,
∴α=30°,
∴∠BOC=30°;
②當(dāng)射線(xiàn)OD在∠AOB外部時(shí),
依據(jù)題意,此時(shí)射線(xiàn)OC靠近射線(xiàn)OB,
∵∠BOC<45°,∠AOD=∠AOC,
∴射線(xiàn)OD的位置也只有兩種可能:
i)若射線(xiàn)DO在∠AOB內(nèi)部,如圖4,
則∠COD=∠BOC+∠BOD=4α,
∵∠AOD=∠AOC,
∴∠AOD=∠COD=4α,
∴∠AOB=∠BOD+∠AOD=4α,
∴AOB=∠BOD+∠AOD=3α+4α=7α=70°,
∴α=10°,
∴∠BOC=10°
ii)若射線(xiàn)OD在∠AOB外部,如圖5,
則∠COD=∠BOC+∠DOB=4α,
∵∠AOD=∠AOC,
∴∠AOD=∠COD=α,
∴∠AOB=∠BOD-∠AOD=3α-α=α=70°,
∴α=42°,
∴∠BOC=42°,
綜上所述:∠BOC的度數(shù)分別是10°,14°,30°,42°.
故答案為:10°或14°或30°或42°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)﹣(+9)﹣12﹣()
(2)4﹣2×(﹣3)2+6÷(﹣)
(3)化簡(jiǎn):5(a2+5a)﹣(a2+7a)
(4)先化簡(jiǎn),再求值:2(a2b+ab2)﹣3(a2b﹣1)﹣2ab2﹣4,其中a=2018,b=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要測(cè)量河岸相對(duì)的兩點(diǎn)A、B之間的距離,先從B處出發(fā)與AB成方向,向前走50米到C處立一根標(biāo)桿,然后方向不變繼續(xù)朝前走50米到D處,在D處轉(zhuǎn)沿DE方向再走17米,到達(dá)E處,此時(shí)A、C、E三點(diǎn)在同一直線(xiàn)上,那么A、B兩點(diǎn)間的距離為
A. 10米 B. 12米 C. 15米 D. 17米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮玩一個(gè)游戲:取三張大小、質(zhì)地都相同的卡片,上面分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)如果和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?做出判斷,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線(xiàn)段AB表示一條對(duì)折的繩子,現(xiàn)從P點(diǎn)將繩子剪斷.剪斷后的各段繩子中最長(zhǎng)的一段為30cm.若AP=BP,則原來(lái)繩長(zhǎng)為( )cm.
A. 55cmB. 75cmC. 55或75cmD. 50或75cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為△ABC的三條邊的長(zhǎng),且滿(mǎn)足b2+2ab=c2+2ac.
(1)試判斷△ABC的形狀,并說(shuō)明理由;
(2)若a=6,b=5,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C、D兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知a+b=﹣,求代數(shù)式(a﹣1)2+b(2a+b)+2a的值.
(2)已知a,b,c是三角形的三邊,且a2+b2+c2﹣ab﹣bc﹣ac=0.求證:此三角形是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,是一個(gè)長(zhǎng)為 2m,寬為 2n 的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀將其均分成四個(gè)完全相同的小長(zhǎng)方形,然后按圖 2 的形狀拼圖.
(1)圖 2 中的圖形陰影部分的邊長(zhǎng)為 ;(用含 m、n 的代數(shù)式表示)
(2)請(qǐng)你用兩種不同的方法分別求圖 2 中陰影部分的面積; 方法一: ;方法二: .
(3)觀(guān)察圖 2,請(qǐng)寫(xiě)出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關(guān)系式: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com