【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a,b,﹣b,c連接起來.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃購進甲、乙兩種學具,已知一件甲種學具的進價與一件乙種學具的進價的和為40元,用90元購進甲種學具的件數(shù)與用150元購進乙種學具的件數(shù)相同.
求每件甲種、乙種學具的進價分別是多少元?
該學校計劃購進甲、乙兩種學縣共100件,此次進貨的總資金不超過2000元,求最少購進甲種玩具多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù) a、b、c 在數(shù)軸上的位置如圖所示:
(1)比較 a、|b|、c 的大。ㄓ“<”連接);
(2)若 m=|a+b|﹣|b﹣1|﹣|a﹣c|,求 1﹣2013(m+c)2013 的值;
(3)若 a=﹣2,b=﹣3,c=,且 a、b、c 對應的點分別為 A、B、C,問在數(shù)軸上是否存在一點 P,使 P 與 A 的距離是 P 與 C 的距離的 3 倍?若存在,請求出 P 點對應的有理數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AD與BE是△ABC的角平分線,D,E分別在BC,AC上,若AD=AB,BE=BC,則∠C=( 。
A. 69° B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一個等腰Rt△ABC對折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點F處,展開后,折痕AE交CD于點P,連接PF、EF,下列結(jié)論:①tan∠CAE=﹣1;②圖中共有4對全等三角形;③若將△PEF沿PF翻折,則點E一定落在AB上;④PC=EC;⑤S四邊形DFEP=S△APF.正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究
問題1 已知:如圖1,三角形ABC中,點D是AB邊的中點,AE⊥BC,BF⊥AC,垂足分別為點E,F(xiàn),AE,BF交于點M,連接DE,DF.若DE=kDF,則k的值為 .
拓展
問題2 已知:如圖2,三角形ABC中,CB=CA,點D是AB邊的中點,點M在三角形ABC的內(nèi)部,且∠MAC=∠MBC,過點M分別作ME⊥BC,MF⊥AC,垂足分別為點E,F(xiàn),連接DE,DF.求證:DE=DF.
推廣
問題3 如圖3,若將上面問題2中的條件“CB=CA”變?yōu)?/span>“CB≠CA”,其他條件不變,試探究DE與DF之間的數(shù)量關系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,菱形ABCD的對角線AC,BD相交于O,點E,F(xiàn)分別是AD,DC的中點,已知OE=,EF=3,求菱形ABCD的周長和面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com