【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價之間符合一次函數(shù)關(guān)系,其圖象如圖所示.

yx的函數(shù)關(guān)系式;

物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當(dāng)銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?

【答案】(1);(2)當(dāng)銷售單價x定為每件80元時,廠家每月獲得的利潤最大,最大利潤是4800元.

【解析】

根據(jù)函數(shù)圖象經(jīng)過點(diǎn)和點(diǎn),利用待定系數(shù)法即可求出y與x的函數(shù)關(guān)系式;

先根據(jù)利潤銷售數(shù)量銷售單價成本,由試銷期間銷售單價不低于成本單價,也不高于每千克80元,結(jié)合電子產(chǎn)品的成本價即可得出x的取值范圍,根據(jù)二次函數(shù)的增減性可得最值.

解:設(shè)yx的函數(shù)關(guān)系式為

函數(shù)圖象經(jīng)過點(diǎn)和點(diǎn),

,解得:,

x的函數(shù)關(guān)系式為

由題意得:

試銷期間銷售單價不低于成本單價,也不高于每千克80元,且電子產(chǎn)品的成本為每千克40元,

自變量x的取值范圍是

,

當(dāng)時,wx的增大而增大,

時,w有最大值,

當(dāng)時,,

答:當(dāng)銷售單價x定為每件80元時,廠家每月獲得的利潤最大,最大利潤是4800元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王抽樣調(diào)查了本地若干天的空氣質(zhì)量情況,把空氣質(zhì)量分成四類:類,類,類和類,分別對應(yīng)的質(zhì)量級別為優(yōu)、良、輕度污染和中度污染四種情況,并繪制兩個統(tǒng)計圖(部分信息缺失);

空氣質(zhì)量條形統(tǒng)計圖

空氣質(zhì)量扇形統(tǒng)計圖

1)本次調(diào)查的樣本容量是________;

2)已知類和類在扇形統(tǒng)計圖中所占的夾角為度,類的頻數(shù)是類的倍,通過計算,求出類和類的頻數(shù),并完成條形統(tǒng)計圖;

3)計算類在扇形統(tǒng)計圖中所對應(yīng)的圓心角度數(shù);

4)若一年按天計算,求本地全年空氣質(zhì)量達(dá)到優(yōu)良以上的天數(shù)(保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于CD兩點(diǎn),與xy軸交于B,A兩點(diǎn),且tanABO=,OB=4,OE=2

1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;

2)求OCD的面積;

3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】騰飛中學(xué)在教學(xué)樓前新建了一座騰飛雕塑(如圖①.為了測量雕塑的高度,小明在二樓找到一點(diǎn)C,利用三角板測得雕塑頂端A點(diǎn)的仰角為,底部B點(diǎn)的俯角為,小華在五樓找到一點(diǎn)D,利用三角板測得A點(diǎn)的俯角為(如圖②.若已知CD10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,點(diǎn)EAC且不與點(diǎn)A、C重合,在的外部作等腰,使,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

請直接寫出線段AF,AE的數(shù)量關(guān)系;

繞點(diǎn)C逆時針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時,如圖,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;

,,在圖的基礎(chǔ)上將繞點(diǎn)C繼續(xù)逆時針旋轉(zhuǎn)一周的過程中,當(dāng)平行四邊形ABFD為菱形時,直接寫出線段AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AB5AC4,∠B,∠C的平分線相交于點(diǎn)OOMAB,ONAC分別與BC交于點(diǎn)M、N,則△OMN的周長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B'C'分別是B、C的對應(yīng)點(diǎn).

1)請畫出平移后的△A'B'C',并求△A'B'C'的面積=    ;

2)請在AB上找一點(diǎn)P,使得線段CP平分△ABC的面積,在圖上作出線段CP

3)請在圖中畫出過點(diǎn)C且平行于AB的直線CM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c過點(diǎn)A(﹣3,0),B(﹣2,3),C(0,3),頂點(diǎn)為D

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)M(1,m),當(dāng)MB+MD的值最小時,求m的值;

(3)若P是拋物線上位于直線AC上方的一個動點(diǎn),求△APC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案