【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B'、C'分別是B、C的對應(yīng)點(diǎn).
(1)請畫出平移后的△A'B'C',并求△A'B'C'的面積= ;
(2)請在AB上找一點(diǎn)P,使得線段CP平分△ABC的面積,在圖上作出線段CP;
(3)請在圖中畫出過點(diǎn)C且平行于AB的直線CM.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,把拋物線先向右平移1個單位,再向下平移4個單位,得到拋物線,所得拋物線與x軸交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左邊,與y軸交于點(diǎn)C,頂點(diǎn)為M;
寫出h、k的值以及點(diǎn)A、B的坐標(biāo);
判斷三角形BCM的形狀,并計算其面積;
點(diǎn)P是拋物線上一動點(diǎn),在y軸上找點(diǎn)使點(diǎn)A,B,P,Q組成的四邊形是平行四邊形,直接寫出對應(yīng)的點(diǎn)P的坐標(biāo)不用寫過程
點(diǎn)P是拋物線上一動點(diǎn),連接AP,以AP為一邊作正方形APFG,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變當(dāng)頂點(diǎn)F或G恰好落在y軸上時,請直接寫出對應(yīng)的點(diǎn)P的坐標(biāo)不寫過程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價元之間符合一次函數(shù)關(guān)系,其圖象如圖所示.
求y與x的函數(shù)關(guān)系式;
物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當(dāng)銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解“陽光體育”活動的開展情況,從全校1000名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每名學(xué)生只能從A、B、C、D中選擇一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
A:踢毽子 B:乒乓球 C:籃球 D:跳繩
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生共有 人,并補(bǔ)全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,求表示區(qū)域D的扇形圓心角的度數(shù);
(3)全校學(xué)生中喜歡籃球的人數(shù)大約是多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6,AD:AB=3:1.則點(diǎn)B的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.
(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+4的圖象與x軸和y軸分別交于點(diǎn)A和B,再將△AOB沿直線CD對折,使點(diǎn)A與點(diǎn)B重合、直線CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.
(1)點(diǎn)A的坐標(biāo)為_________,點(diǎn)B的坐標(biāo)為_________;
(2)在直線AB上是否存在點(diǎn)P使得△APO的面積為12?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)求OC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com