四邊形ABCD是正方形.
(1)如圖1,點(diǎn)G是BC邊上任意一點(diǎn)(不與B、C兩點(diǎn)重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E.求證:△ABF≌△DAE;
(2)在(1)中,線段EF與AF、BF的等量關(guān)系是______(直接寫出結(jié)論即可,不需要證明);
(3)如圖2,點(diǎn)G是CD邊上任意一點(diǎn)(不與C、D兩點(diǎn)重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E.那么圖中全等三角形是______,線段EF與AF、BF的等量關(guān)系是______(直接寫出結(jié)論即可,不需要證明).

【答案】分析:(1)根據(jù)正方形的性質(zhì)可知:△ABF≌△ADE;
(2)利用全等三角形的性質(zhì),AE=BF,AF=DE,得出AF-BF=EF;
(3)同理可得出圖(2),△ABF≌△DAE,EF=BF-AF.
解答:(1)證明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF與△DAE中
,
∴△ABF≌△DAE(AAS).

(2)解:EF=AF-BF.
∵△ABF≌△DAE,
∴AE=BF,
∵EF=AF-AE,
∴EF=AF-BF.

(3)解:△ABF≌△DAE.EF=BF-AF.
證明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF與△DAE中
,
∴△ABF≌△DAE(AAS).
∴AE=BF,
∴EF=AE-AF=BF-AF.
點(diǎn)評:主要考查了正方形的性質(zhì)和全等三角形的判定.充分利用正方形的特殊性質(zhì)來找到全等的條件,從而判定全等后利用全等三角形的性質(zhì)解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.
精英家教網(wǎng)
(1)填空:如圖1,AC=
 
,BD=
 
;四邊形ABCD是
 
梯形;
(2)請寫出圖1中所有的相似三角形;(不含全等三角形)
(3)如圖2,若以AB所在直線為軸,過點(diǎn)A垂直于AB的直線為軸建立如圖2的平面直角坐標(biāo)系,保持△ABD不動(dòng),將△ABC向x軸的正方向平移到△FGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,△FBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題學(xué)習(xí):
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點(diǎn),則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點(diǎn).四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2

(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點(diǎn),H、F分別是邊形AD、BC上的點(diǎn),且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省中考真題 題型:解答題

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊 AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD.
(1)填空:如圖1,AC= _____,BD=_____ ;四邊形ABCD是_____ 梯形.
(2)請寫出圖1中所有的相似三角形(不含全等三角形)
(3)如圖2,若以AB所在直線為x軸,過點(diǎn)A垂直于AB的直線為y軸建立如圖2的平面直角坐標(biāo)系,保持ΔABD不動(dòng),將ΔABC向x軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD。
(1)填空:如圖1,AC=______,BD=______;四邊形ABCD是______梯形;
(2)請寫出圖1中所有的相似三角形(不含全等三角形);
(3)如圖2,若以AB所在直線為軸,過點(diǎn)A垂直于AB的直線為軸建立如圖2的平面直角坐標(biāo)系,保持ΔABD不動(dòng),將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊

AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD.

(1)填空:如圖9,AC=         ,BD=         ;四邊形ABCD是       梯形.

(2)請寫出圖9中所有的相似三角形(不含全等三角形).

(3)如圖10,若以AB所在直線為軸,過點(diǎn)A垂直于AB的直線為軸建立如圖10的平面直角坐標(biāo)系,保持ΔABD不動(dòng),將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

 


查看答案和解析>>

同步練習(xí)冊答案