如圖,拋物線的頂點(diǎn)P的坐標(biāo)是(1,-3),則此拋物線對(duì)應(yīng)的二次函數(shù)有( )

A.最大值1
B.最小值-3
C.最大值-3
D.最小值1
【答案】分析:當(dāng)拋物線開(kāi)口向上時(shí),頂點(diǎn)縱坐標(biāo)就是二次函數(shù)的最小值.
解答:解:因?yàn)閽佄锞開(kāi)口向上,頂點(diǎn)P的坐標(biāo)是(1,-3),
所以二次函數(shù)有最小值是-3.
故選B.
點(diǎn)評(píng):主要考查了求拋物線的頂點(diǎn)坐標(biāo)及最值的方法.當(dāng)拋物線開(kāi)口向上時(shí),頂點(diǎn)縱坐標(biāo)就是二次函數(shù)的最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,拋物線的頂點(diǎn)為A(1,-4),且過(guò)點(diǎn)B(3,0).
(1)求該拋物線的解析式;
(2)將該拋物線向右平移幾個(gè)單位,可使平移后的拋物線經(jīng)過(guò)原點(diǎn)?并直接寫出平移后拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線的對(duì)稱軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過(guò)點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河南)如圖,拋物線的頂點(diǎn)為P(-2,2),與y軸交于點(diǎn)A(0,3).若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,-2),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線上PA段掃過(guò)的區(qū)域(陰影部分)的面積為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•雅安)如圖,拋物線的頂點(diǎn)A的坐標(biāo)(0,2),對(duì)稱軸為y軸,且經(jīng)過(guò)點(diǎn)(-4,4).
(1)求拋物線的表達(dá)式.
(2)若點(diǎn)B的坐標(biāo)為(0,4),P為拋物線上一點(diǎn)(如圖),過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連接PB.求證:PQ=PB.
(3)若點(diǎn)C(-2,4),利用(2)的結(jié)論.判斷拋物線上是否存在一點(diǎn)K,使△KBC的周長(zhǎng)最。咳舸嬖,求出這個(gè)最小值,并求此時(shí)點(diǎn)K的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案